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Abstract

In recent years iterative decoding has regained popularity� with the remarkable results pre�
sented in a paper by a group of French researchers� They introduced a new family of convolu�
tional codes� nicknamed �Turbo codes� after the resemblance with the turbo engine� A turbo
code is built from a parallel concatenation of two recursive systematic codes linked together by
nonuniform interleaving� Decoding is done iteratively by two separate a posteriori probability
decoders� each using the decoding results from the other one� For su�ciently large interleaver
sizes� the error correction performance seems to be close to Shannon�s theoretical limit�

In this Master�s Thesis we examine the performance of turbo�codes on the additive white
Gaussian noise channel� The in�uence of the size of the encoder memory� di�erent types and
sizes of interleavers are examined together with two di�erent decoding algorithms� the one�
way algorithm and the two�way algorithm� We show that the two algorithms have the same
performance and that the choice of interleaver and encoder is important�
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Chapter �

Introduction

When transmitting digital information over a noisy channel� it is demanded that the user can
retrieve data with high �delity or even with no errors� The simplest way to protect data from
corruption is to increase the transmitting power or the so�called signal�to�noise ratio �SNR��
However� this is expensive and in some way impractical� For example� the price for increasing
SNR with one decibel is to increase the transmission power with about ���� In a satellite
communication system this could cost millions of dollars as the higher e�ect probably means
higher weight of the satellite� An alternative and more e�cient way to solve the problem is
to use error�control coding� which increases the reliability of the communication by adding
redundancy to the information� The redundancy can then be used to detect or correct errors�

In 
��� a new coding scheme� called turbo codes by its discoverers� a group of French re�
searchers� was introduced� It was one of the most important developments in coding theory
for many years� The main advantages of this method� when used together with an iterative
decoding scheme� is low complexity in spite of high performance� which makes it suitable for
mobile communication� It is therefore part of the standard for the third�generation mobile
telecommunications systems�

The main purpose of this Masters Thesis is to study the bit�error performance of turbo codes
on the additive white Gaussian noise channel� The in�uence of the encoder memory size �	��
and ��� di�erent interleavers �block and random interleavers� and decoding algorithms �two�
way and one�way� are examined�

The report is organized as follows� The second section� Information transmission� is an intro�
duction to digital communication systems and to coding theory� Section � describes convo�
lutional encoders and in particular the recursive systematic encoders� In Section � we look
at di�erent interleavers and Section  describes the turbo encoder� In Section �� the iterative
decoder and the a posteriori decoder� are described� Section � describes our implementation
of the di�erent algorithms� Section � contains the simulation results for various combinations
of turbo codes and the last section consists of a summary and the conclusions� In Appendix A
tables of our simulations are shown�
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Chapter �

Information transmission

��� Racing towards the Shannon limit

The history of error�control coding and information theory began in 
��� when Claude E�
Shannon published his famous paper �A Mathematical Theory of Communication� �Sha����
In his paper Shannon showed that every communication channel has a parameter C �measured
in bits per second�� called the channel capacity� If the desired data transmission rate Rt �also
measured in bits per second� of the communication system is less than C� it is possible to
design a communication system� using error�control coding� whose probability of errors in the
output is as small as desired� If the data transmission rate is larger than C it is not possible
to make the error probability tend towards zero with any code� In other words� channel noise
establishes a limit for the transmission rate� but not for transmission reliability� Shannon�s
theory also tells us that it is more economical to make use of a good code than trying to build
a good channel� e�g�� increasing the signalling power� We must note that Shannon did not tell
us how to �nd suitable codes� his achievement was to prove that they exist�

��� A digital communication system

Figure 	�
 shows the functional diagram of a digital communication system� It consists of an
encoder� a channel and a decoder� The source information� x� can be either an analog signal�
such as an audio or video signal� or a digital signal� e�g�� computer communication� Without
loss of generality we can assume that the source is discrete in time� since� according to the
sampling theorem� any time continuous signal can be completely reconstructed if the original
continuous signal was sampled with a sampling frequency twice the highest frequency in the
signal�

Encoder Channel Decoder
x v r �x

Figure 	�
� A communication system�

In his paper Shannon showed that the problem of sending information from a source to a
destination over a channel always can be divided into two subproblems� The �rst is to represent
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the output from the information source as a sequence of binary digits� This is called source

coding� The other subproblem is to map the information sequence into a binary sequence
suitable for sending over the channel� This is called channel coding� The main advantage of
this separation principle is that it is possible to use the same channel for di�erent sources
without reconstructing the channel coding�

x Source
encoder

binary
digits

Channel
encoder

Digital
channel

Noise

Channel
decoder

binary
digits

Source
decoder

�x �u

u v

r

Figure 	�	� A communication system with the encoder and decoder divided into two subcoders�

Figure 	�	 shows our communication system divided according to Shannon�s separation prin�
ciple� The discrete signal from the signal source is fed into the source encoder whose purpose
is to represent the source output using as few binary digits as possible� In other words� it
removes as much redundancy as possible from the source output� The output from the source
encoder is called the information sequence� u� It is fed into the channel encoder whose purpose
is to add� in a controlled manner� some redundancy to the binary information sequence� The
resulting sequence is called the code sequence� v� The code sequence travels from the encoder
to the decoder through the channel� This can be from one place to another� e�g�� between a
mobile phone and a base station� or from one time to another� e�g�� in a tape recorder or a CD
player� On the channel the signal always will be subjected to distortion� noise or fading� The
purpose of the channel decoder is to correct the errors in the received sequence� r� that was
introduced by the channel� using the redundancy that was introduced by the channel encoder�
The output of the channel decoder is the estimated code sequence� �u� From this sequence the
source decoder reconstructs the original source sequence�

��� The discrete time channel

In the previous section we indicated that the channel provides the connection between the
transmitter and the receiver� The physical channel can be a pair of wires that carry an
electrical signal or an optical �ber that carries the signal on a modulated light beam� It can
be free space over which the signal is radiated by an antenna or another media such as magnetic
tapes or disks� In either case we cannot directly send digital information on the channel� thus
we need a way to transform the digital signal into a useful analog waveform� see Figure 	���
The transformation from the digital signal to the analog waveform is called modulation� The
modulator transforms every code word to an analog waveform of duration Ts� Some of the
most common modulation methods are pulse amplitude modulation �PAM�� phase shift keying
�PSK� and frequency shift keying �FSK� �Lin���� Besides these modulation methods there are
a number of more advanced modulation methods� e�g�� the Gaussian minimum shift keying





�GMSK� used in GSM� In this thesis we will only consider transmission using binary phase
shift keying �BPSK� modulation� This means that the modulator generates the waveform

s��t� �

� q
�Es

Ts
cos�t � � � t � Ts

� � otherwise
�	�
�

for the input � and s��t� � �s��t� for the input �� Here� Es is the signal energy and Ts is the
duration of the signal� The modulated signal then enters the channel�

Modulator
Waveform
channel

n�t�

Demodulator
v s�t� r�t� r

Figure 	��� A decomposition of a digital communication channel�

Since the channel introduces noise� the modulated code words� transmitted through the chan�
nel� are corrupted� In this thesis we will only consider the additive white Gaussian noise

�AWGN� channel� The AWGN noise� n�t�� introduced by the channel is Gaussian� with zero�
mean and a two�sided spectral density of N���� i�e��

E�n�t�	 � �

V �n�t�	 �
N�

�

�	�	�

and it is added to the modulated signal� The received signal is r�t� � s�t� 
 n�t�� The
demodulator processes the channel�corrupted transmitted waveform and produces a sequence
of numbers� r � r�r� � � � � that represent estimates of the transmitted data symbols� This is
done using a matched �lter� i�e�� it calculates the convolution between the received symbol and
the matched �lter

ri �

r
�

Ts

Z Ts

�
r�t� cos��t�dt � �

p
Es 
 ni�

where ni is the additive noise disturbance� Thus we have

ri � N��
p
Es�
p
N����� �	���

The sequence r is then fed into the channel decoder� see Figure 	�	�

The signal�to�noise ratio �SNR� is a measure of the quality of the channel and is de�ned
as the average ratio of the energy of the desired signal to the energy of the noise signal�
Eb�N�� It is often measured in dB� If we are sending an uncoded BPSK signal� the signal
energy Es is equal to the bit energy Eb� By using a sign decision rule we get� for the uncoded
case� the bit�error probability

Pb � Q

�r
�Eb

N�

�
�
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where

Q�x� �

Z �

x

�p
��

exp�y
��� dy

is the complementary error function of Gaussian statistics �Lin����

��� A short introduction to coding theory

Error�control coding has taken two major directions� block codes and convolutional codes� As
the rest of the report deals with convolutional codes we here give a short introduction to block
codes�

����� Block codes

In the block coding case� the sequence of information bits coming from the source encoder
are divided into blocks of length K� These blocks are called messages� There are �K distinct
messages at the input of the encoder� The block encoder maps each distinct K�tuple of
information into an N �tuple of code� i�e�� the code word� A binary �N�K� block code B is a set
of M � �K binary N�tuples� N is called the block length and the ratio

R �
K

N
�	���

is called the code rate� In order to be able to correct or detect errors K has to be less than
N � The N �K extra added symbols are called the parity�check symbols�

Other important properties of a block code are the Hamming weight� the Hamming dis�

tance and the minimum distance� The Hamming weight� wH�x�� is de�ned as the number
of non�zero elements in the codeword x and the Hamming distance� dH�x�y� � wH�x � y��
is the number of positions where x di�ers from y� The minimum distance� dmin� is de�ned
as the minimum Hamming distance between any pair of code words� It determines the error

correction capability t of the code as

t � bdmin � �

�
c�

The block code guarantees correction of the errors if the received sequence di�ers in t or less
positions from the correct code word� In some cases it might also be able to correct errors
that di�ers in more than t positions�

Another commonly used property for a code is linearity� A code is linear if a bitwise modulo�	
addition of two code words results in another code word� The all�zero word is always a code
word in a linear code�

Example �	�
 Table 	�
 shows the famous binary ����� Hamming block code with one of
the possible mappings from information sequence to code sequence� The rate of the code is
R � ����

The Hamming weight of the code word ������� is  and of ������� it is �� The Hamming
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Message Code word

���� �������
���� �������
���� �������
���� �������
���� �������
���� �������
���� �������
���� �������
���� �������
���� �������
���� �������
���� �������
���� �������
���� �������
���� �������
���� �������

Table 	�
� The binary ����� Hamming block code�

distance between the code words ������� and ������� is � The minimum distance dmin of
the code B is  as the minimum Hamming distance for each pair of code words is � The
number of errors that can be corrected is t � �� which means that all errors with Hamming
weight � can be corrected� For example if we receive the code word ������� we know that it
probably is the code word ������� that has been sent and we decode it as �u � �����
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Chapter �

Convolutional coding

��� The general convolutional encoder

In a convolutional encoder the information bits u � u�u� � � � are not separated into blocks�
as in the case of block codes� but instead they form a semi�in�nite sequence that is shifted
symbol�wise into a shift register� see Figure ��
� The encoder consists of shift registers and
modulo�	 adders� The memory� m� of the encoder is the number of delay �D� elements in
the shift registers� For the encoder in Figure ��
 the memory m equals 	� The output of the
encoder is the modulo�	 sum of the values in di�erent elements� The output symbols are then
fed into a parallel to serial converter� the serializer�

u�u� � � �

� �

�

v
���
� v

���
� � � �

v
���
� v

���
� � � �
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e
r
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e
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v
���
� v

���
� v

���
� v

���
� � � �

Figure ��
� An encoder for a binary rate R � ��� convolutional code�

The number of input bits to the encoder at each time unit is equal to b� The input bits form
the information sequence

u � u�u� � � � � u
���
� u

���
� � � � u

�b�
� u

���
� u

���
� � � � u

�b�
� � � � � ���
�

In a similar way the number of output bits from the encoder at a time unit is equal to c and
they form� after serialization� the code sequence

v � v�v� � � � � v
���
� v

���
� � � � v

�c�
� v

���
� v

���
� � � � v

�c�
� � � � � ���	�

The rate R of the encoder is de�ned as R � b�c and it describes how much redundancy that
has been added� The encoder in Figure ��
 has one input �b � �� and two output bits �c � ���
which means that the rate is R � ����
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The content of the shift registers is called the state� �� of the encoder and the number of
states equals �m� The state describes the past history of the encoder� For the encoder in
Figure ��
� at time t� we have �t � ut��ut��� i�e�� the state is the input bits which entered the
memory at the two previous time units� The current state together with the input symbols
are su�cient to determine the next state and the output symbols� A so�called state�transition

diagram can be drawn to illustrate this� It shows what the next state and the output will be
given a certain state and input� The state�transition diagram for the encoder in Figure ��
 is
shown in Figure ��	� As seen in Figure ��	 there is a one�to�one correspondence between the
input symbol and the next state� given the previous state�

�� ��

��

��

����

����

����

����

����

����

����

����

Figure ��	� The state�transition diagram for the encoder in �gure ��
�

Some of the de�nitions for block codes are also applicable for convolutional codes� All convo�
lutional codes are linear� The Hamming weight and the Hamming distance are de�ned in the
same way as for block codes� The distance measure between two code sequences of a convo�
lutional code is called the free distance� de�ned as the minimum Hamming distance between
any two di�ering code sequences�

dfree � min
v ��v�

dH�v�v
��� �����

Example �	�
 Consider the encoder in Figure ��
 and let the input sequence be u � �����
If the initial state is �� � �� then it follows from the state�transition diagram in Figure ��	
that the state sequence is

���
������ ���

������ ���
������ ���

������ ���

and that the code sequence is

v � ��������

The state�transition diagram can be extended to a trellis diagram by adding a time axis to
the state�transition diagram� see Figure ���� The trellis diagram can for example be used to
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�nd the minimum distance or free distance of a code� Some decoding algorithms use a trellis
representation to decode convolutional codes �VO����
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����
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� � �

� � �

� � �

� � �

Figure ���� A binary rate R � ��� trellis structure for the encoder in Figure ��
�

Now we introduce the delay operator D� Multiplying a sequence with D is equivalent to delaying
the sequence one time unit� This gives us another way of representing the information and
the code sequence� i�e��

u�D� � � � � 
 u��D�� 
 u� 
 u�D
� 
 u�D

� 
 � � �

v�D� � � � � 
 v��D�� 
 v� 
 v�D
� 
 v�D

� 
 � � �
�����

where ui � u
���
i u

���
i � � � u

�b�
i and vi � v

���
i v

���
i � � � v

�c�
i �

We know that the there exists a linear operator which transforms the information sequence
into the code sequence� i�e�� the encoder� which can be represented in matrix form as

v�D� � u�D�G�D� ����

where G�D� is called the generator matrix� Obviously we need to be able to reconstruct the
information sequence� i�e�� G�D� must have a right inverse� If the right inverse exists� the
generator matrix is called an encoder matrix�

Example �	�
 Consider the encoder in Figure ��
� The generator matrix for the encoder
is

G�D� �
�
� 
D 
D� � 
D�

�
�

The output sequence v�D� �
�
v����D�v����D�

�
of the encoder with generator matrix G�D�

can be written as

v����D� �u�D��� 
D 
D���

v����D� �u�D��� 
D���
�����







A generator matrix G�D� is equivalent to another generator matrix G��D� if the same code
sequence can be generated by rearranging the information symbols� i�e�� G�D� � f�D�G��D��

��� The recursive systematic encoder

In the previous section we discussed the convolutional encoder in general� In this section we
will describe a special convolutional encoder that is used in the turbo coding scheme� This
convolutional encoder is called recursive systematic encoder� see Figure ����

ut

ut

�

�

�

vt �� ��

��

��

����

����

����

����

����

����

����

����

Figure ���� A rate R � ��� recursive systematic convolutional encoder and its state�transition
diagram�

A systematic encoder has the property that the b information symbols appear unchanged
among the c code symbols along with c � b parity�check symbols� In Figure ��� the �rst

symbol of vt is the information symbol� i�e�� v
���
t � ut� and the second� v

���
t � is the parity�check

symbol� Since the b information symbols appear unchanged in the code sequence and we can
always permute the columns in G�D�� i�e�� rearrange the order of the code sequence and still
obtain an equivalent convolutional code� Hence� we can write the recursive systematic encoder
as

G�D� �
�
Ib R�D�

�
�����

where Ib is the b� b identity matrix and R�D� is a �c� b�� b rational matrix�

Since the shift register has a feedback loop� it is called recursive� The feedback loop cor�
responds to the denominator in the R�D� matrix�


	



Example �	�
 The encoder in Figure ��� has the generator matrix

G�D� �
�

� ��D�

��D�D�

�
and it is equivalent to the encoder in Figure ��
 since

G��D� � f�D�G�D� � �� 
D 
D��
�

� ��D�

��D�D�

�
�
�
� 
D 
D� � 
D�

�
�

Another way of representing the encoder is to use the parity check matrix� H� This method
is suitable for describing turbo encoders and will be used in Chapter �
� A code sequence
satis�es the condition vHT � �� where we call HT the syndrome former matrix� Since the
convolutional code word satis�es v�D� � u�D�G�D�� then

v�D�H�D�T � u�D�G�D�H�D�T � � �����

and since u�D� �� � in general we have

G�D�H�D�T � � �����

Example �	�
 To �nd the parity�check matrix H�D� for the encoder in Figure ��� or for
the equivalent encoder in Figure ��
 we need to satisfy the condition G�D�H�D�T � �

G�D�H�D�T �
�

� ��D�

��D�D�

�� � 
D�

� 
D 
D�

�
� ��

This gives us

H�D� �
�
� 
D� � 
D 
D�

�

The syndrome former matrix H�D�T can be expanded as

H�D�T � HT
� 
HT

� D 
 � � �
HT
ms
Dms � ���
��

where HT
i � � � i � ms� is a c� �c� b� matrix and ms is the memory of the syndrome former�

which in general is not the same as the encoder memory m�

Combining ���
�� with the equality vHT � � we get

vtH
T
� 
 vt��H

T
� 
 � � �
 vt�msH

T
ms

� �� ���

�

For causal code sequences we have

HT �

	
B


HT
� HT

� � � � HT
ms

HT
� HT

� � � � HT
ms

� � �
� � �

� � �

�
CA ���
	�
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which is the semi�in�nite syndrome former matrix�

Example �	� �cont	�
 The memory of the syndrome former is ms � � and

H� � � � � �
H� � � � � �
H� � � � � �

The corresponding semi�in�nite syndrome former matrix is

HT �

	
BBBBB


� � �
� � �

� � �
� � �

� � �
� � �

� � �

�
CCCCCA

Using ���

� we get the following semi�in�nite equation systems

v�H
T
� � �

v�H
T
� 
 v�H

T
� � �

v�H
T
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T
� 
 v�H

T
� � �

���

v�H
T
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 vms��H
T
� 
 vmsH

T
� � �

v�H
T
ms


 � � �
 vmsH
T
� 
 vms��H

T
� � �

���

���
��

Since the encoder is systematic we know that the code word vi consists of b information sym�
bols and c � b parity�check symbols� The �rst vector equation in ���
�� gives us c � b scalar
equations which can be solved by substitution� i�e�� the c� b parity�check symbols in v� can
be calculated� By using the next part of ���
�� we again have c � b unknown parity�check
symbols in v� and c� b equations which can be solved� etc�

The following example describes how the parity�check symbols are calculated and a way of
representing the state of the encoder�

Example �	� �cont	�
 Consider the same encoder again and the information sequence
u � ����� The �rst parity�check symbol is equal to the �rst information symbol� i�e��

v
���
� � u� � �� The second parity�check symbol v

���
� is calculated by solving v�H

T
� �

� � � � � � v���� � � 	 v
���
t � �� Next we calculate the state of the encoder which repre�

sents the past equations� The state is v�H
T
� � � and v�H

T
� � �� The next parity�check

symbol� v
���
� � is calculated using the state � � ��� and the information bit u� � v

���
� � �� etc�
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v

�v
���
� � � �

� � � �

�v�H
T
� � �

� � � �

�v
���
� � � �

� � � Next state

� � � �

� � � �

� � �

� � � �

� � � �

� � �

From the matrix above we see that the state sequence is

���
������ ���

������ ���
������ ���

������ ���

and that the code sequence is v � ��������� This is the same result as we would get if we
used the state�transition diagram in Figure ���






Chapter �

The interleaver

The interleaver is a device that rearranges� or permutes� the input bits in a prede�ned manner�
Ideally� two symbols that are close to each other in time in the input should be far apart in
the output� Normally an interleaver is used to transform burst errors� that can occur in the
coded signal� into single errors� A burst error is when several consecutive bit�errors occur� The
turbo coding scheme uses the interleaver to design a longer and more complex encoder� One
of the goals when designing interleavers for turbo codes is to re�map the information sequence
so that at least one of parity�check sequences always has a high Hamming weight� The design
of the interleaver is a very important part in the e�ectiveness of the turbo coding system�

Interleavers can be divided into two general classes� block interleavers� which we mainly will
discuss here� and convolutional interleavers� The di�erence between them can be described as
that a block interleaver takes a block of symbols and then rearranges them while the convo�
lutional interleaver continuously rearranges the symbols�

The opposite of the interleaver is the deinterleaver which takes interleaved sequence as its
input and produces the original sequence as its output�

��� Block interleavers

����� The �classical� block interleaver

The simplest interleaver is the �classical� block interleaver� It uses two memories with I rows
and J columns each� The input symbols are written row by row and then read out column
by column� The reason for using two memories is that we want to be able to read from one
memory while writing into the other� The delay of the interleaver is I � J �

Example �	�
 Consider the interleaver in Figure ��
 and the input sequence x � x�x� � � � x��
First the symbols x� � � � x� are written into the �rst memory of the encoder� When x	 is written�
x� is read and when x
 is written x� is read� etc� The output will be x

� � x�x�x�x�x	x�x
x��
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x�x�

x
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Figure ��
� Two memories of a ��� block interleaver with the symbols x � x�x� � � � x� written
into it�

����� The pseudo�random block interleaver

In the pseudo�random block interleaver data is written into a memory in a pseudo�random
order and read out column by column� Here we also use two memories so that we can read
from one memory while we write to the other one�

Example �	�
 Consider the pseudo�random interleaver in Figure ��	 and the input se�

x�x�

x�x�

x	x


x�x�

Figure ��	� Two memories of a � � � random interleaver with the symbols x � x�x� � � � x�
written into it�

quence x � x�x� � � � x�� In the �gure the symbols are written into the interleaver in a
pseudo�random way� Then they are read out column by column and get the output sequence
x�x�x�x�x�x
x�x	�

����� The multi stage interleaver �MIL	

The multi�stage interleaver �MIL�� is a method used in the ARIB standard proposal �ARI���
to describe a pseudo�random interleaver using three rules� By combining the rules complex
pseudo�random interleavers can be described�

The �rst rule is

L�N �M 	�

It describes an N rows by M columns block interleaver with the size L� If L � MN the last
MN � L positions of the interleaver will not be used�
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x	

x�x�

x�x�

Figure ���� The input symbols interleaved in a ��� �	 interleaver�

Example �	�
 Consider the input symbols x � x�x�x�x�x	 and the interleaver de�ned
by the rule �� � �	� see Figure ���� Since � �  � � the last position will not be used� The
symbols are written row by row into the interleaver� They are then read out column by column
and the output is x�x�x	x�x��

The second rule�

RfAg

describes an interleaver that reverses the order of A input symbols�

Example �	�
 The input symbols x � x�x�x�x�x	 are going to be interleaved with the
interleaver described by the rule Rf�g� The output is x	x�x�x�x��

The third rule used in MIL is

L�N��M�� N� �M�� � � � 	�

which means that the �rst L input symbols should be permuted using an L�N��M�	 inter�
leaver� the second L input symbols should be interleaved using an L�N��M�	 interleaver� etc�

Example �	�


x
x	

x�x�

x�x�
x�

x��x��x

x�x�

Figure ���� The �rst � input symbols written into a ����	 interleaver and the next � symbols
written into a ���� 	 interleaver�
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Consider the input symbols x � x�x�x� � � � x�� and the rule ����� ��	� The �rst � symbols
will be interleaved in a �� block interleaver and the next � symbols will be interleaved using
a ��  block interleaver� The output is x�x�x	x�x�x
x�xx�x��x�x���

Now we can combine the three rules and get a multi�stage interleaver�

L�R��R�	

is a block interleaver with the size L where the row indices are interleaved using the interleaver
de�ned by R� and the column indices are interleaved using the interleaver de�ned by R�� R�
and R� can be a combination of any of the three rules above�

Example �	�
 The input sequence x � x�x�x� � � � x� is to be permuted with ��Rfg�����		�

We start by interleaving the row indices� j�j�j�� with Rfg� The interleaved result is j�j�j��
Then we expand the rule �� � �	 and interleave the column indices� i�i�i�� which permutes
into i�i�i��

With i as column indices and j as row indices we write the sequence into a  �  inter�
leaver� see Figure ��� The symbols are then read out column by column and the output is
x�x�x�x
x�x	x��

i� i� i�

j�

j�

j�

x	

x�

x
x�

x�x�

x�

Figure ��� The interleaved indexes i used as column indexes in a �  block interleaver�

��� Convolutional interleavers

The di�erence between a convolutional interleaver and a block interleaver is that the block
interleaver takes a block of symbols and permutes them while the convolutional interleaver
rearranges the symbols continuously �cf� convolutional vs� block encoders�� In Figure ���
a convolutional interleaver�deinterleaver pair is depicted� The interleaver consists of shift
registers of di�erent lengths on the interleaver and deinterleaver side and multiplexors that
choose where the symbols go� All the multiplexors change position synchronously after each


�



symbol so that successive encoder outputs enter di�erent rows of the interleaver memory� Since
the di�erent rows have di�erent lengths� di�erent symbols will get di�erent delays� The �rst
encoder output enters the top interleaver row and is transmitted over the channel immediately�
Then it enters the top row of the deinterleaver memory where it is delayed �I���j time units�
The second encoder output symbol enters the second row of the interleaver and is delayed
j time units on the interleaver side� Thus adjacent encoder outputs are transmitted j time
units apart and not a�ected by the same channel error burst� After passing through both the
interleaver and the deinterleaver� all the symbols have the same delay�

j

�I � ��j

Multi�

plexor

Input Output

Figure ���� A convolutional interleaver and deinterleaver�

��� Matrix representation of the interleaver

The interleaver can be expressed as a matrix called a scrambling matrix or scrambler� If x is
the bi�in�nite binary input sequence of an interleaver then the output y can be expressed as
y � xS� where S is the scrambler�

A bi�in�nite matrix S � �sij�� i� j � Z� that has one � in each row and one � in each column
and satis�es the causality condition

sij � �� i � j ���
�

is called a convolutional scrambler�

The identity scrambler has ones only along the diagonal� The output symbols will not be
permuted�

Example �	�
 Consider the block interleaver in Figure ���� Both memories of the inter�
leaver are shown in the �gure� The input symbols are written into the interleaver row by row
in one of the memories and read out column by column from the other� When the �fth symbol
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Figure ���� A �� � block interleaver�

is written into the second memory� the �rst symbol is read from the �rst memory and when
the sixth symbol is written� the third is read� etc� The scrambling matrix representation for
the interleaver is

S �

	
BBBBBBBBBBBBBBBBBB


� � � �  � � � � � � �� �� �� �
� �
� �
 �
� �
� �
� �
� �
� �
� �

� � �

�
CCCCCCCCCCCCCCCCCCA

�

The one at i � �� j � � corresponds to the reading of the �rst symbol when the �fth is written
and the one at i � � j � � corresponds to that the third symbol is read when the sixth is
written� and so on� The empty positions denote zeros�

A random interleaver can be constructed� using a method by Jimenez and Zigangirov �JZ����
by taking an n � n diagonal matrix and permuting the columns in a random fashion� This
way we will still have exactly one � in each column and one � in each row� Then we unwrap
the submatrix� which is below the diagonal� as shown in Figure ���� The unwrapped matrix
is then repeated inde�nitely to form a scrambling matrix�

In Chapter �
 we will use the scrambler together with the syndrome former to describe
the turbo codes� For this we need some de�nitions�

A multiple convolutional scrambler is a bi�in�nite matrix S � �sij�� i� j � Z� that has at

least one � in each row and one � in each column and that satis�es the causality condition
���
�� Since there is more than one � in each row� the multiple convolutional scrambler not
only permutes the symbols� but it also makes copies of them� If all the rows have the same
number of ones� the scrambler is homogeneous�
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�

Figure ���� A �� � matrix before and after unwrapping�

Consider the non�multiple scrambling matrices S��� � �s
���
ij � and S��� � �s

���
ij �� The matrix

S � S���
�S��� � �sij�� i� j � Z

is called�column interleaved if �
si��j� � s

���
ij

si��j��� � s
���
ij

for all i� j � Z� This means that every other column in the matrix S comes from S��� and S���

respectively�

Example �	�
 Consider the scramblers S��� and S���� where S��� is the identity scrambler�

S��� �

	
BBBBBBBBBB


� � � � � �  �
� �
� �
� �
 �
� �

� � �

�
CCCCCCCCCCA

and S��� �

	
BBBBBBBBBB


� � � � � �  � �
� �
� �
� �
 �
�

� � �

�
CCCCCCCCCCA

To make S � S���
�S��� we take column � from S��� and insert into column � � � � � in S�

Next we take column � from S��� and insert it into column � � � 
 � � � of S and so on� The
column�interleaved matrix S � S���

�S��� is

S �

	
BBBBBBBBBBBB


�� �� �� �� �� �� �� �� �� �� �� ��
� � � � � �  � � � � � � �� ��
� � �
� � �
� � �
 � �
� �

� � �

�
CCCCCCCCCCCCA
� ���	�

		



The bold indices in the top row indicate which column of the matrices S��� and S��� the
columns in S come from�

If the input sequence of the convolutional scrambler consists of subblocks of c binary symbols
and the output sequence consists of subblocks of d binary symbols �see Chapter �
�� it is
convenient to divide the scrambler matrix into c � d� d 
 c submatrices Sij � i� j � Z so that
S � �Sij�� Since each column of S has one �� the rows will have in average d�c ones� The
ratio d�c is called the rate of the scrambler�

Example �	� �cont	�
 The column�interleaved matrix S can be divided into submatrices
of size � � �� where one column of the submatrix comes from S��� and the other from S����
Thus the rate of S is ����

We need one more de�nition to be able to describe the turbo code�

Consider the two matrices S��� �
�
S
���
ij

�
and S��� �

�
S
���
ij

�
whose submatrices are of sizes

c� � d� and c� � d�� respectively� The matrix

S � S���
� S��� � �Sij� � i� j � Z �����

is called row�column interleaved if��
�

S��i���j� � S
���
ij

S��i���j��� � �

S��i�����j� � �

S��i�����j��� � S
���
ij

�����

for all i� j � Z�

Example �	�
 Consider the column�interleaved scrambler ���	� and call it S���� By row�
column interleaving it with two identity scramblers� S��� and S��� we get the rate �� scram�
bler

S �

	
BBBBBBBBBBBBB


�� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� 	� 
� �� ��
� � � � � �  � � � � � � �� �� �� � �� �� �� �� �� ��

�� � � �
�� � �
�� � �
��  � �
�� � �
�� � �
�� � �
�� � �
�� � �
�� � � �

� � �

�
CCCCCCCCCCCCCA
� ����

The bold row indices show which matrices the rows come from and analogously� the bold
column indices show which matrices the columns come from�

	�



Chapter �

The turbo encoder

��� The turco encoder

In order to achieve high coding gains with moderate decoder complexity� concatenation has
proven to be an attractive scheme� A concatenated code consists of two separate codes which
are combined to form a large code� Concatenation of error control codes was �rst studied by
David G� Forney in 
��� �For���� Classically� concatenation consisted in cascading a block
encoder with a convolutional encoder in a serial structure with an interleaver �see Chapter ��
separating them� Typically the block encoder was used as outer encoder� to protect against
burst errors� and the convolutional encoder as inner encoder� to reduce the bit error�

A new scheme was introduced by a group of French researchers� Berrou� Glavieux and Thiti�
majshima in 
��� �BGT���� They used a parallel concatenated scheme which got the nickname
turbo coding after the resemblance with the turbo engine� When the French researchers de�
coded a rate R � �� turbo code with a so�called iterative decoding algorithm they claimed
that a bit error of ���
 could be achieved at a SNR of ���dB� This was initially met by the
coding community with much skepticism� but when the result was reproduced by other re�
searchers the community was convinced�

The turbo encoder is built up by two recursive systematic encoders and an interleaver� in a
parallel concatenated manner� see Figure �
� The �rst encoder takes the information sequence
and produces the �rst parity�check sequence� v���� The second encoder takes the interleaved
version of the information sequence and produces the second parity�check sequence� v���� The
two parity�check sequences together with the information sequence� v��� � u� form the output
of the turbo encoder� i�e��

v � v�v� � � � � v
���
� v

���
� v

���
� v

���
� v

���
� v

���
� � � � �

��� Parity�check matrix representation of the turbo encoder

A more general way of representing the turbo encoder is by using a parity�check matrix rep�
resentation� This representation can also be used to describe low�density parity�check codes
as described in �JZ���� in fact they show that turbo codes are special cases of low�density
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Figure �
� A rate R � ��� systematic� parallell concatenated convolutional encoder�

parity�check codes�

Since each of the recursive systematic encoders can be described with a parity�check matrix
as described in Chapter ��	 and the interleaver can be described with a scrambling matrix�
described in Chapter ��� we can combine these and construct a representation of the turbo
encoder�

We use the rate R � �� row�column�interleaved convolutional scrambler in ����� designed
from two identity scrambling matrix S��� and S��� together with another scrambling matrix
S���� corresponding to the interleaver in the turbo coder� The scrambling matrix S transforms

the input sequence �utv
���
t v

���
t � to �utu

�
tv

���
t v

���
t � where u�t is the interleaved version of ut�

We use a combination of two row�column interleaved parity�check matrices� with submatrices
of size �� � to design the combined parity�check matrix� HT

cc�

HT
cc �

	
BBBBBBBBBBBBBBBB


� � �

� � �
� � �

� � �
� � �

� � �
� � �

� � �
� � �

� � �

�
CCCCCCCCCCCCCCCCA

��
�

	



which corresponds to a parity�check matrix with inputs �ut� v
���
t � u�t� v

���
t �� To make it corre�

spond to �ut� u
�
t� v

���
t � v

���
t � we swap row 	 and �� � and � and so on� We obtain

H
�T
cc �

	
BBBBBBBBBBBBBBBB


� � �

� � �
� � �

� � �
� � �

� � �
� � �

� � �
� � �

� � �

�
CCCCCCCCCCCCCCCCA

��	�

We can now design a parity�check matrix which describes the complete turbo encoder by
multiplying S with the combined parity�check matrix H

�T
cc to get

HT
tu � SH

�T
cc ����

Where HT
tu is the total parity�check matrix of the turbo encoder�
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Chapter �

Iterative decoding

��� General principles

This section describes a decoding method called iterative decoding� Iterative decoding is the
preferred decoding method for the turbo coding scheme as simulations show that a remark�
ably good performance can be achieved� close to the Shannon limit� despite the relatively low
complexity of the iterative algorithm�

r���
r���
r���

APP � Interleaver APP �

Interleaver

Deinterleaver

Decision

�
ext���
t

�
ext���
t

�
���
t �N�

Figure ��
� Iterative decoding procedure�

The fundamental idea of iterative decoding is that two or more a posteriori probability �APP�
decoders exchange soft information� see Figure ��
� One of the decoders calculates the a pos�
teriori probability distribution of the information sequence and passes that information to the
next decoder� The new decoder makes use of the information and computes its own version
of the probability distribution� This exchange of information is called an iteration� After a
certain number of iterations� N � a decision is made at the second decoder� For each iteration
the probability that we decode in favour of the correct decision will improve�

Let

r � r�r� � � � � r
���
� r

���
� r

���
� r

���
� � � � ���
�

denote the received sequence corresponding to the code sequence generated by the turbo

encoder in Figure �
 and let r
���
� t denote the sequence of received symbols corresponding to
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the information sequence u except the received symbol r
���
t � i�e��

r
���
� t

def
� r

���
� r

���
� r

���
� � � � r

���
t��r

���
t�� � � � � ���	�

Now let

�t���
def
� P �ut � �� �����

denote the a priori probability that the information symbol ut � ��

Each iteration of the iterative decoding algorithm is executed in two phases� Let �
�l�
t �i�� l �

�� �� i � � � � � N denote the a posteriori probability� P �ut � �jr���t��� which is obtained in the
lth phase of the ith iteration�

In the �rst phase of the �rst iteration� the �rst a posteriori probability decoder uses the
a priori probability �t��� and the received sequences r��� and r��� to calculate the a posteriori

probability� �
���
t ��� � P �ut � �jr���r����� This can be rewritten as

�
���
t ���

def
� P �ut � �jr���t r

���
� t r���� �

P �r
���
t jut � ���t���P �r

���
� t r���jut � ��

P �r
���
t r

���
� t r����

�����

where we have separated the dependence on r
���
t � Since the channel is memoryless by assump�

tion P �r
���
t jut � �� does not depend on the a priori information and P �r

���
� t r���jut � �� only

depends on a priori probabilities P �uj � �� for j �� t�

Analogously we de�ne the a posteriori probability that ut � � as

P �ut � �jr���r���� � �� �
���
t ��� �

P �r
���
t jut � ����� �t����P �r

���
� t r���jut � ��

P �r
���
t r

���
� t r����

� ����

Let �
���
t ��� denote the ratio of the a posteriori probabilities for the information symbols after

the �rst phase of the �rst iteration�

�
���
t ��� �

�
���
t ���

�� �
���
t ���

� �����

Combining this with ����� and ���� we get

�
���
t ��� �

�t���

�� �t���

P �r
���
t jut � ��

P �r
���
t jut � ��

P �r
���
� t r���jut � ��

P �r
���
� t r���jut � ��

� �����

The ratio

�t��� �
�t���

�� �t���
�����
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is the likelihood ratio of the a priori probabilities� In practice we often have �t��� � ��� which
gives �t��� � �� The ratio

�int
t �

P �r
���
t jut � ��

P �r
���
t jut � ��

�����

is called the intrinsic likelihood ratio for the information symbol ut� Since we use BPSK�
modulation over the AWGN channel we can calculate this as

�int
t �

P �r
���
t jut � ��

P �r
���
t jut � ��

�

�p
N��

� e
��r

���
t

�
p
Es�

�

N�

�p
N��

� e
��r

���
t

�
p
Es��

N�

� e
�r

���
t

p
Es

N� � ���
��

The intrinsic likelihood ratio does not change for a certain symbol during the iterations�

The last part of ����� is called the extrinsic likelihood ratio for the �rst phase of the �rst
iteration� i�e��

�
ext���
t ��� �

P �r
���
� t r���jut � ��

P �r
���
� t r���jut � ��

� ���

�

Thus we can rewrite �����

�
���
t ��� � �t����

int
t �

ext���
t ���� t � �� � � � � � ���
	�

which is the outcome of the �rst phase of the �rst iteration�

During the second phase the a posteriori decoder calculates the likelihood ratios for the in�

formation sequence based on the interleaved version of r
���
t and on the received sequence r

���
t

corresponding to the second parity�check sequence� If the interleaver is su�ciently large� the

interleaved version of r
���
� t will be independent of the non�interleaved one used in ���

�� The

decoder also exploits its knowledge of the likelihood ratios obtained from the �rst phase� Since
the a priori likelihood ratio �t��� � � and the second decoder adds the intrinsic likelihood
ratio to its output we only use the extrinsic likelihood ratio� �ext������� from the �rst phase
as a priori input to the second phase�

The output from the second decoder is

�
���
t ��� � �t����

int
t �

ext���
t ����

ext���
t ���� t � �� �� � � � � ���
��

where

�
ext���
t ��� �

P �r
���
� t r���jut � ��

P �r
���
� t r���jut � ��

� ���
��

Then� in the same manner� we use the extrinsic information� �
ext���
t ���� from the second phase

of the �rst iteration as the a priori information to the �rst phase of the second iteration� As
ouput we have

�
���
t ��� � �t����

int
t �

ext���
t ����

ext���
t ���� ���
�

	�



After N iterations we make a decision based on the output from the extrinsic information from
both the decoders together with the intrinsic information and the a priori information�

�
���
t �N� � �t����

int
t �

ext���
t �N��

ext���
t �N�� t � �� �� � � � � ���
��

If �
���
t �N� � ��� then we decode � and otherwise 
�

In the following sections we consider two di�erent algorithms for a posteriori probability de�
coding� i�e�� the two�way and the one�way algorithms� In contrast to the popular Viterbi and
sequential decoding algorithms �JZ��� the APP decoding algorithms has not been used much
in practical application because of their high complexity and long decoding delay� The Viterbi
algorithm is a maximum�likelihood �ML� decoding algorithm for convolutional codes and its
output is the most probable transmitted code path� It cannot provide us with information
on individual bit error probabilities for the di�erent information bits� The APP decoder is a
maximum a posteriori probability �MAP� decoding algorithm which minimizes the bit error
probability�

Encoder Channel APP decoder

P �u
�k�
i � ��

P �u
�k�
i � �jr���t��xt vt rt

Figure ��	� A digital communication system with APP decoding�

The purpose of the APP decoder is to �nd the a posteriori probability for each information bit
given the a priori probability and the received symbols r���t�� see Figure ��	� In the following

subsections we assume that the a priori probability P �u
�k�
i � �� � ���� i�e�� the binary encoded

bits are equally likely�

��� The Two�way or BCJR�algorithm

The two�way algorithm is the most celebrated APP decoding algorithm for terminated con�
volutional codes and it is often called the BCJR algorithm in current literature after the
inventors Bahl� Cocke� Jelinek and Raviv �BCJR����

By terminated convolutional codes we mean that the information sequence is divided into
blocks of length n and these blocks are followed by m dummy symbols which return the
encoder to the zero�state� This means that we always start and end the decoding in the zero�
state� The number of dummy symbols� m� is the size of the encoder memory�

Example �	�
 Consider the recursive systematic encoder in Figure ���� Assume that we
want to encode a block of length n � � binary information bits� e�g�� u � ����� To return
the encoder to the zero�state we need to add two dummy bits udummy � ��� We start in the
zero�state and visit the following states�

� � ��
�� ��

�� ��
�� ��

�� ��
�� ��

�� ��

��



ut

ut

�

�

�

vt

Figure ���� A recursive systematic convolutional encoder�

If the encoder was non�recursive we would just add zeros as dummy symbols since� in that
case� the input symbols are shifted directly into the memory�

The two�way algorithm calculates the a posteriori probability P �ui � �jr���n�m��� which can
be rewritten according to Bayes� rule in probability theory

P �u
�k�
i � �jr���n�m�� �

P �u
�k�
i � �� r���n�m��

P �r���n�m��
���
��

The numerator is the joint probability that the sequence r���n�m� is received and that the

symbol u
�k�
i is zero� given that the transmitted sequence is a code sequence� The denominator

is the probability that we have received r���n�m� given that the transmitted sequence is a
code sequence� Equation ���
�� can be expressed by conditioning on the information sequence
u���n��

P �u
�k�
i � �jr���n�m�� �

P
u���n��U�k�

���n�i

P �r���n�m�ju���n��P �u���n��P
u���n��U���n� P �r���n�m�ju���n��P �u���n��

� i � � � � � n� k � � � � � b

���
��

where U �k�
���n�i is the set of information sequences that have u

�k�
i � � and U���n� is the set of

all information sequences� The information bits and the state�transition in the encoder has a
one�to�one correspondence as discussed in Chapter ��
� We de�ne S���n�m� as the set of state
sequences such that we start and end in the zero�state

S���n�m�
def
� f����n�m� � ���� � � � �n�mj�� � �n�m � �g ���
��

and S�k�
���n�m�i as

S�k�
���n�m�i

def
� f����n�m� � ���� � � � �n�mj�� � �n�m � �� �i � �i�� 	 u

�k�
i � �g ���	��

which is the set of state sequences that start and end in the zero state and where the state

transition from state �i to �i�� corresponds to u
�k�
i � �� We can now rewrite the a posteriori

�




probability once more

P �u
�k�
i � �jr���n�m�� �

P
����n�m��S�k�

���n�m�i

P �r���n�m�j����n�m��P �����n�m��P
����n�m��S���n�m�

P �r���n�m�j����n�m��P �����n�m��

def
�

�
�k�
i

�
���	
�

where P �r���n�m�j����n�m�� is the probability that r���n�m� is received� given that the code cor�
responding to the state transitions ����n�m� was transmitted and P �����n�m�� is the a priori

probability of the state sequence ����n�m�� The numerator �
�k�
i is the sum of the probabilities

that correspond to the state sequences S�k�
���n�m�i and the denominator � is the sum of the

probabilities corresponding to S���n�m��

A more easy�to�grasp way of representing ���	
� is by using a matrix representation� Let
Pt denote the �m � �m state transition matrix

Pt � �pt��� �
������� ���		�

where �m is the number of states and

pt��� �
�� � P �rt� �t�� � ��j�t � �� � P �rtj�t�� � ��� �t � ��P ��t�� � ��j�t � �� ���	��

and �� �� � � � � � �m � �� Since there is a one�to�one correspondence between the state transi�
tions and the information sequence

P ��t�� � ��j�t � �� �

�
���b� if � � �� is possible
�� otherwise

���	��

assuming P �u
�k�
i � �� � ���b and b is the number of input bits� This means that the state

transition matrix Pt is sparse as some of the matrix elements are zero�

Example �	�
 The recursive systematic encoder is Figure ��� with m � �� has a sparse
state�transition matrix with following appearance�

Pt �

	
BB


pt��� �� � pt��� �� �
pt��� �� � pt��� �� �

� pt��� �� � pt�� ��
� pt�� �� � pt�� �

�
CCA

For example the state transition �� � �� does not exist 	 pt��� �� � ��

Since BPSK�modulation is used over the AWGN channel we have

r
�i�
t � N��

p
Es�
p
N����

which results in the metric

P �rtj�t � �� �t�� � ��� �
cY

i��

e
� �r

�i�
t �w�i�

t ��

N� ���	�

�	



where c corresponds to the number of code symbols� in our case c � �� and w
�i�
t � fpEs��

p
Esg

corresponds to the noise�free version of the received signal� when the code symbol v
�i�
t � f�� �g

was generated by the state�transition � � ���

Let e� be a �m�dimensional row�vector with a 
 in the �rst position and zeros in all the
other positions� i�e��

e� � ��� � � � ��� ���	��

This corresponds to �� � �� Consider the product

e�P�P� � � � Pn�m�� � ��� � � � �� ���	��

where the zeros in the �m � � positions comes from the fact that we terminate the sequence
to the zero�state� The � value obtained in ���	�� is the same as that in ���	
�� In order

to calculate the denominator of ���	
�� �
�k�
i � we introduce� as a counterpart to Pt� the state

transition matrix

P
�k�
t � �p

�k�
t ��� �������� ���	��

where

p
�k�
t ��� ��� � P �rt� �t�� � ��� u�k�t � �j�t � �� �

P �rtj�t�� � ��� �t � �� u
�k�
t � ��P ��t�� � ��j�t � �� u

�k�
t � ��P �u

�k�
t � ���

���	��

The matrix element p
�k�
t ��� ��� is the conditional probability that we at depth t receive the c�

tuple rt� that the encoder makes the state transition from � to �� and that the kth information

symbol corresponds to u
�k�
t � �� In a similar way as in ���	�� we have

e�P�P� � � � Pi��P
�k�
i Pi�� � � � Pn�m�� � ��

�k�
i � � � � �� ������

where �
�k�
i is the conditional probability that we receive r���n�m� given that a code sequence

corresponding to u
�k�
i � � was transmitted� The calculation of �

�k�
i is the most crucial part of

the algorithm� To calculate �
�k�
i � i � � � � � n� � we need the following n equations

e�P
�k�
� P�P� � � � Pn��Pn � � � Pn�m�� � ��

�k�
� � � � � ��

e�P�P
�k�
� P� � � � Pn��Pn � � � Pn�m�� � ��

�k�
� � � � � ��

e�P�P�P
�k�
� � � � Pn��Pn � � � Pn�m�� � ��

�k�
� � � � � ��

���
���

���

e�P�P�P� � � � P
�k�
n��Pn � � � Pn�m�� � ��

�k�
n��� � � � ��

����
�

To be able to calculate the n equations e�ciently we split the equations in two parts� The �rst

part contains e�P�P� � � � Pi��� and the second part contains P
�k�
i Pi
� � � � Pn�m��� The name

two�way implies that decoding is done in two directions� �rst the �rst part of the equations are
calculated in the forward direction and secondly the second part of the equations are calcu�
lated in the backward direction� The two parts are then combined to get the appropriate result�

��



In the forward direction we start at the root �e�� and de�ne the forward or ��metric

�i
def
� �	i���	i��� � � � 	i��

m � ��� � e�P�P� � � � Pi��� � � i � n� � ����	�

By convention we let �� � e�� For each depth i � i � � � � � n�� the �i components are stored�

To be able to use a recursive scheme in the backward direction� the second part of the equations
are calculated starting at the terminal node at depth n
m� Since the codes are terminated
we know that we end in the zero�state at depth n 
m� corresponding to e�� Since we go in
the backward direction the P matrix has to be transposed� We de�ne the ��k��metric

�
�k�
i

def
�
�


�k�
i ���


�k�
i ��� � � � 


�k�
i ��m � ��

�
� e�P

T
n�m��P

T
n�m�� � � � P

T
i���P

�k�
i �T � � � i � n� � � k � b

������

Using the � and ��k� metric we can calculate

�
�k�
i �

�m��X
���

	i���

�k�
i ���� � � i � n ������

and

� � 	n�m��� �����

By combining ���	
� with ������ and ����� we obtain

P �u
�k�
i � �jr�n�m�� �

P�m��
��� 	i


�k�
i ���

	n�m���
� � � i � n� � � k � b ������

Example �	�
 Let us calculate the a posteriori probability� P �u
�k�
i � �jr���n�m��� � � i � n�

for the rate R � ��� binary encoder in Figure ��� in combination with BPSK�modulation and
the AWGN channel� Let SNR � � dB and� for simplicity� we let the symbol energy be Eb � ��
The received sequence can be found in Table ��
� Since the encoder only has one input k � ��

t � 
 	 � � 

r
���
t �����
 ������� ������	 
������ ��
�	�
 �������

r
���
t 
��
��� ���������� �
�

	� 
���	
 ����� ���������

Table ��
� The received sequence� r � r
���
� r

���
� r

���
� � � � at SNR � � dB over the AWGN channel

with BPSK modulation�

Combining Es � � and SNR � � dB gives N� � � which can be used to calculate ���	��
P �rtj�t�� � ��� �t � �� can be found� for the di�erent possible code symbols vt at time t� in
Table ��	�

��



t

vt � 
 	 � � 

�� ��������	 ���	� ��
�� ���� ����� ��	��

�
 ��������� ���� ����	 ��
� ��������	 ����


� ��

 ����� ��

� ��	
� ����� ��
��



 ���
� ����� ��	� ���	� ��������	 �����

Table ��	� The possible values of P �rtj�t�� � ��� �t � ��� depending on which sub�block� vt�
the state�transition � � �� corresponds to�

Now we can design the state transition matrices by using the metric in Table ��	�

Pt �

	
BB


mt����P� � mt����P� �
mt����P� � mt����P� �

� mt����P� � mt����P�

� mt����P� � mt����P�

�
CCA ������

where mt�vt� corresponds to the P �rtj�t�� � ��� �t � �� in Table ��	� P� corresponds to the
a priori probability P �ui � �� � ��� and P� corresponds to P �ui � �� � ���� We can now

calculate the � and �
�k�
i metric as described in ����	� and �������

	� � � � � � � �
	� � � ��������	 � ���������� � �
	� � � ���������	 ���������� ��������
 ���������� �
	� � � �������	 ��������� ���������	 ���������	 �
		 � � ���������	 ���������
 ���������	 ��������
 �
	
 � � ���������� ���������
 � � �
	� � � ���������� � � � �



���
� � � ������ � � � �



���
� � � ���������� � � ���������
 �



���
� � � ��������� ��������� ���������� ��������� �



���
� � � ���������	 ���������� ���������� ���������� �



���
	 � � ���������
 ���������
 ���������	 ��������	 �



���

 � � ��������� ������ ��������� ��������� �

�



From the � and �
�k�
i metric can now � and �

�k�
i be calculated from ���	�� and ������� We get

the following result

� � ����������

�
���
� � ���������

�
���
� � ����������

�
���
� � ����������

�
���
� � ����������

�
���
	 � ����������

�
���

 � ����������

������

which gives us

P �u
���
� � �� � ������

P �u
���
� � �� � ������

P �u
���
� � �� � ������

P �u
���
� � �� � ������

P �u
���
	 � �� � ������

P �u
���

 � �� � ������

������

which is decoded to u � ����

We can use the fact that the Pt matrix is sparse and describe the matrix multiplication in
���	��� in a more e�cient way� using a trellis description� Each multiplication is equivalent to
moving a time step in the trellis� To calculate both the � and � metric we need two di�erent
trellises� one in the forward direction and one in the backward direction� We introduce the
trellis multiplicative metric �i��� in the forward direction and ��i��� in the backward direction�
In the forward direction we start in the zero�state� i�e��

����� �

�
�� � � �
�� otherwise

������

which corresponds to e� in ���	��� The forward metrics for the depth t up to n 
m is then
calculated as

�t��
�� �

X
����

�t�����pt����� �
�� ����
�

where � are the states that has a possible state�transition to �� in the trellis� This corresponds
to the non�zero elements in the Pt matrix� Thus we see that the trellis metric in the forward
direction corresponds to the ��metric described earlier�

��



In the backward direction we start at depth n
m in the trellis� in the zero�state� i�e��

�����
�� �

�
�� �� � �
�� otherwise

� ����	�

We then move backward in the trellis until we have reached depth � in a similar way as in the
forward direction�

��i��� �
X

������
��t����

��pt��� ��� ������

As the forward metric corresponds to the ��metric � can be found in the trellis as

� � �n�m���� ������

�
�k�
i can be obtained by

�
�k�
i �

��m���X
���

��m���X
����

����p
�k�
i ��� �����i����

�� �����

Example �	�
 Let us calculate the a priori probability for the same received sequence as
in the previous example� shown in Table ��
� by using trellis description� First the state�
transition metric� pt��

�� ��� has to be calculated� This is done in the same manner as before
and it is shown in Table ��	� Now we can design the trellis in the forward direction by using
����
�� The resulting trellis is shown in Figure ���� The metric in the trellis is the same as the
� metric in the previous example� In the same way we can calculate the backward metric�

�� �� �� �� �� �� ��

�� �� �� ��

�� �� �� ��

�� �� ��

����� 	��	����� ��

�	����� ��
������� ��������� ��	
�	������ 
��	��������

��������� ���������� ��
�����	 ���������	

��	�
����� ��	������	 ���������� 
��������

��������� ���������� ����	����	

Figure ���� The forward metrics are written next to the corresponding states�

The resulting trellis is shown in Figure ��� The � and �
�k�
i can now be calculated and they

are the same as before�

��
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Figure ��� The backward metrics 
��� are written next to the corresponding states�

��� The One�way Algorithm for APP Decoding

The one�way algorithm was independently invented by Tro�mov �Tro��� and Zigangirov �Zig����
We use Zigangirov�s version of the algorithm as described in �JZ���� This algorithm is a
forward�only algorithm and it can be used on non�terminated codes� as opposed to the two�
way �BCJR� algorithm described in Section ��	� The algorithm is recursive and it uses a

sliding window of size � � i�e�� in order to calculate the a posteriori probability for u
�k�
i � � the

receiver has to reach the depth i
 � � Analogously to ���	
� we have

P �u
�k�
i � �jr���i���� �

P �r���i���� u
�k�
i � ��

P �r���i����

�

P
����i�� ��S�k�

���i�� �i

P �r���i���j����i�� ��P �����i�� ��P
����i�� ��S���i�� �P �r���i���j����i�� ��P �����i�� ��

def
�

�
�k�
i��

�i��
� � � k � b�

������

where S���i�� � is the set of state�transition sequences ����i�� � such that �� � �� and S�k�
���i�� �i is

the set of state�transition sequences ����i�� � such that �� � � and the transition from state �i

to state �i�� is caused by u
�k�
i � �� i�e��

S���i�� � def� f����i�� � � ���� � � � �i�� j�� � �g ������

and

S�k�
���i�� �i

def
� f����i�� � � ���� � � � �i�� j�� � �� �i � �i�� 	 u

�k�
i � �g� ������

Note that we do not know in which state we end� as we do when we decode a terminated
sequence with the two�way algorithm� P �r���i���j����i�� �� is the probability that r���i��� is
received� conditioned on that the code sequence generated by the state sequence ����i�� � is
transmitted and P �����i�� �� is the a priori probability of the state sequence ����i�� ��
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Now let

�i��
def
�

�m��X
���

	i�� ��� ������

where 	i�� ��� is given by ����	�� Let

�
�k�
i�� �

�
	
�k�
i�� ���	

�k�
i�� ��� � � � 	

�k�
i�� ��

m � ��
�

def
� e�P�P� � � � Pi��P

�k�
i Pi�� � � � Pi����� �����

where Pi and P
�k�
i are given by ���		� and ���	��� Let

�
�k�
i��

def
�

�m��X
���

	
�k�
i�� ���� ���
�

Now we can write ������ as

P �u
�k�
i � �jr���i���� �

�
�k�
i��

�i��
� ���	�

In order to calculate �
�k�
i�� and �i�� we use a recursive scheme� For �i�� it follows from ����	�

that �
�� � e�
�i���� � �i��Pi�� �

�����

This together with ������ makes it possible to calculate �i�� �

In order to calculate �
�k�
i�� we introduce

�
�k�
ij �

�
	
�k�
ij ���	

�k�
ij ��� � � � 	

�k�
ij ��m � ��

�
def
� e�P�P� � � � Pi��P

�k�
i Pi�� � � � Pj��� j � � � i � j � �� � � k � b�

�����

Let

Aij �

	
BBBB

�

���
ij

�
���
ij
���

�
�b�
ij

�
CCCCA � j � � � i � j � �� ����

be a b � �m matrix and let A be a b�� � �� � �m matrix whose entries are the matrices
Ait� t� � � i � t�

A t �

	
BBB


At�����t

At�����t
���

At���t

�
CCCA � �����

��



Example �	�
 Suppose that m � �� b � �� c � � and � � � Since b � � the Aij matrix will

only contain �
���
ij � The A t matrix will have the following appearance

A t �

�
�

���
t���t

�
���
t���t

�
�

�
e�P�P� � � � P

���
t��Pt��

e�P�P� � � � Pt��P
���
t��

�
�

The vector �t is

�t � e�P�P� � � � Pt��Pt���

From the previous equations it follows that

A tPt �

	
BBB


At�����t��

At�����t��
���

At���t��

�
CCCA � �����

Now we calculate

At�t�� � �tP
�k�
t �

	
BBBB

�tP

���
t

�tP
���
t
���

�tP
�b�
t

�
CCCCA �

	
BBBB

�

���
t�t��

�
���
t�t��
���

�
�b�
t�t��

�
CCCCA � �����

In order to get A t�� we �rst remove the top matrix At�����t�� from A tPt and save it for later
use� Then we shift all the other A�matrices up one position and insert At�t�� from ����� in
the empty position� We get

A t�� �

	
BBB


At�����t��

At�����t��
���

At�t��

�
CCCA � �����

The rows of the matrix At�����t��� which we removed from A � are the vectors �
�k�
t��� � � k � b�

de�ned by ������ They are used together with �t�� to calculate the a posteriori probability

P �u
�k�
t���� � �jr���t���� � �

�k�
t����t��

Example �	� �cont	�
 If we want to calculate A t�� we start by multiplying the A t matrix
by Pt� getting

A tPt �

�
e�P�P� � � � P

���
t��Pt��Pt

e�P�P� � � � Pt��P
���
t��Pt

�
�

��



Then we remove the top row and shift the other up one position� We then calculate

At�t�� � �tP
���
t � e�P�P� � � � Pt��Pt��P

���
t

and insert it into the empty position in A � This gives us the new matrix

A t�� �

�
e�P�P� � � � Pt��P

���
t��Pt

e�P�P� � � � Pt��Pt��P
���
t

�
�

Example �	�
 Assume that we want to calculate the a posteriori probabilities� P �u
�k�
i �

�jr���i���� using the one�way algorithm for the same encoder and received sequence as in
Example ��� and let � � �� The received sequence can be found in Table ��
� The matrices Pt
and P

���
t can be calculated the same way as in the Example ��� with the metric in Table ��	�

To decode the �rst information symbol� u�� we need �� and A � � First we initialize A to

A � �
�
e�P

���
�

�
�
�
��������	 � � �

�
and

�� � e�P� �
�
��������	 � ���������� �

�
Then we can start the decoding procedure by multiplying A � and �� with P�

A �P� �
�
e�P

���
� P�

�
�
�
���������	 � ��������
 �

�
and

�� � e�P�P� �
�
���������	 ���������� ��������
 ����������

�
Then we calculate A��� corresponding to �����

A��� � e�P�P
���
� �

�
���������	 � � ����������

�
and insert it into A �P� corresponding to ������

A � �
�
e�P�P

���
�

�
�
�
���������	 � � ����������

�
Then we can calculate the a posteriori probability from �� and �

�k�
� � which we removed from

A �P�� i�e��

P �u� � �jr������ �
P�m��

��� 	
���
� ���P�m��

��� 	����
� ������� ������

Then we calculate A � in the same way and so on� We get the following a posteriori probabilities

P �u� � �jr������ � ������

P �u� � �jr���	�� � ������

P �u� � �jr���
�� � ������

which will be decoded to u � ���� which is the same as in Example ����
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Chapter �

Implementation of the iterative

decoding algorithm

This section describe how our simulation programs were designed� Since the two�way algo�
rithm uses terminated codes and the one�way algorithm uses non�terminated codes and needs
to be � symbols ahead� the implementation of the two algorithms are quite di�erent�

Important parameters when designing a mobile communication system are the delay of the
decoder� the complexity of the algorithm and the memory consumption� These parameters
will also be discussed�

��� Iterative decoding using the two�way algorithm

Since the code sequences decoded by the two�way algorithm are terminated� it is suitable to
decode one block of n information symbols at a time� Figure ��
 shows a �owchart how each
block of received symbols are decoded�

First we start with initializing the likelihood ratio� �i��� � � assuming that P �ui � �� � ����
for i � � � � � n�

Then we use the two�way algorithm to decode a whole block of n symbols� such that we
get n a posteriori likelihoods as output� We use a trellis implementation as described in Chap�
ter ��	� To avoid using the intrinsic likelihood ratio and the a priori likelihood ratio twice�
we extract the extrinsic information by dividing the a posteriori likelihood by the intrinsic
likelihood and the a priori likelihood ratio�

The extrinsic likelihood ratio is then interleaved together with the information sequence�

The extrinsic likelihood ratio from the �rst decoder is used as a priori information to the
second decoder� which calculates its own version of the n a posteriori likelihood ratios� These
are divided by the a priori likelihood ratio and the intrinsic likelihood ratio to get the extrinsic
likelihood ratio�

To use it in the �rst decoder we have to deinterleave the extrinsic likelihood ratio� which

�	



Let
�t��� � �

Decode with

�rst decoder

Extract

extrinsic likelihood

Interleave

Deinterleave

Extract

extrinsic likelihood

second decoder

Decode with

Iteration � N
Yes

The block is �nished
No

Figure ��
� The �ow of the iterative decoding of one block of symbols�

is then fed into the �rst decoder�

After N iterations� a decision can be made based on ���
��� The process is then repeated
for the next block of symbols�

To avoid numerical problems we had to limit the output likelihood ratios and normalize the

� and �
�k�
i metric�

��� Iterative decoding using the one�way algorithm

In the one�way implementation of the iterative decoding algorithm we used a totally di�erent
scheme� Since the one�way algorithm is used on non�terminated codes� it is possible to use a
pipeline structure of the decoder� Pipelining enables us to use several consecutive decoders
to do parallel work on di�erent data bits� A pipeline works much like an assembly line� i�e��
when one decoder has �nished decoding its data it passes the result on to the next decoder
and continues to decode the next data input�

The one�way decoder needs the a priori likelihood ratio for symbol i 
 � from the previ�
ous decoder to produce the a posteriori likelihood for symbol i� thus there is a delay between

��



the decoders� The � likelihood ratios are interleaved and therefore the delay between the
decoders depends on where those � likelihood ratios are placed in the interleaver�

Example �	�
 If we use the � � � block interleaver in Figure ��	� where the indices are
in the order which they are written to the interleaver� With � � � we have to wait for ��

before we can decode the �rst symbol of the interleaved sequence�

In the � � � random interleaver in the same �gure we have to wait until ��
 is written
into the interleaver before we decode the �rst symbol� Thus we have to wait for the whole
interleaver to be full�

Output

��
��	������

���������

�����
�	

��������Input

Output

����������

�������


���	��	��

������
���

Figure ��	� Likelihood ratios in a ��� block interleaver �left� and a random interleaver �right��

Since the delay can vary between � and the size of the interleaver we decided to always use
the maximum delay� i�e�� we decode block�wise where one block has the size of the interleaver�
This is not necessary since it is possible to calculate the actual delay of the interleaver and
then decode symbol�wise�

The data �ow in the decoding process is shown in Figure ���� The �rst decoder starts to
process one block of data� with the a priori likelihood ratio �t��� � �� The output a posteriori
likelihood ratios are then divided by the a priori likelihood ratios and the intrinsic likelihood
ratios the same way as with the two�way algorithm to produce the extrinsic likelihood ratios�
Before the second decoder can start decoding its �rst block of data� the �rst decoder has to
decode the next block to produce the extrinsic likelihood ratios needed� Then the second de�
coder can start to decode a block of data� In Figure ��� the numbers in the boxes correspond
to the order in which the decoders can start decoding a block of data and the arrows show
where the likelihood ratios come from�

��� A comparison between the one�way and two�way algorithm

Since most of the time is spent in the a posteriori decoders� it is essential to minimize the
complexity of those� It is the same for both encoders�

The complexity calculation of the two�way and the one�way algorithms� for each block of
n symbols� can be divided into the following parts

��
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� iteration� � phase

� iteration� � phase

� iteration� � phase

� iteration� � phase

� � � �

 � �

� �

��

Figure ���� Datapath for the pipeline structure�

� Calculating the state�transition metric�

� Calculating the � and � metric or respectively the A matrix�

� Calculating the � and �
�k�
i �

The complexity of calculating the state�transition metric is high� since it involves an ex oper�
ation�

When calculating the � and � metric or equivalently move through the trellis in the two�
way algorithm we have to do 	 multiplications and 
 addition for each state and for each
symbol� i�e�� � � � � n � �m multiplications and n � �m additions�

The complexity of calculating the A matrix in the one�way implementation is somewhat higher�
For each time step we have to do � matrix multiplications� This gives us ��� times the com�
plexity of calculating the � and � metric�

Calculation of the extrinsic likelihood ratios can be done directly by a method described
in �JZ��� and de�interleaving does not involve any arithmetic�

This is done �N times as we have �N decoders�

The memory consumption is relatively low for the two�way implementation compared to the
one�way implementation�

�



Since we decode a block at a time with the two�way algorithm� we need to save all the received
symbols for that block� i�e�� n symbols� Between each iteration we need to save the likelihood
ratios in the interleaver and the deinterleaver� i�e�� �n symbols� The two�way algorithm itself
needs to temporarily save the ��metric as described in Section ��	� i�e�� �mn symbols� We do

not need to save the �
�k�
i metric since we directly can calculate the a posteriori probability

for each time step� The total memory usage is thus � � �mn symbols�

The memory usage is for the one�way algorithm is very large� since we have to save the
information symbols for all the iterations that the decoder processes� i�e�� we have to save
�N � n code symbols� Besides that we have the memory that the decoders are using which
is �N � ��m� The total memory usage is thus about N times higher than for the two�way
algorithm�

The delay of the two�way implementation is only one block as the decoder has to be �n�
ished when the next block of data arrives� i�e�� the delay is n symbols�

The delay of the one�way implementation is larger� since we have to wait for the pipeline
to �ll up before we can decode the symbols� i�e�� the delay is �N � n which is �N times higher
than for the two�way implementation�

If we compare the iterative decoder� using the two�way a posteriori implementation� used
on turbo codes with the Viterbi decoder used on a normal convolutional code with similar
complexity we see that the iterative decoder has better performance but longer delay� For
example a the Viterbi decoder used on a memory � convolutional decoder has approximately
the same complexity as the memory 	 iterative decoder with 	� iterations� The performance
is approximately ��� dB better for the iterative decoder at a bit error rate of �����

��



Chapter �

Results

In this section the results of our simulations are presented as comparisons between the bit�error
rate for di�erent interleaver sizes and interleaver types� di�erent sizes of component encoders�
di�erent numbers of iterations and �nally a comparison between the one�way and the two�way
algorithms using di�erent delays � for the one�way algorithm�

We start by looking at the bit�error rates for di�erent types and sizes of the interleaver� The
interleavers used in the simulations are �classical� block interleavers with sizes ��� � �����
�� � �� � ����� ��� � ��� � ���� and ��� � ��� � ���� symbols� and pseudo�random
interleavers of the same sizes� From this point on the �classical� block interleaver is called just
block interleaver and the pseudo�random interleaver is called random interleaver�

The interleaver is� as we will see� a very important part of the performance of a turbo
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Figure ��
� Diagram showing bit�error probabilities for di�erent interleaver types and sizes for
the two�way algorithm with 
� iterations and m � ��
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code system� If we compare the � � � block interleaver in Figure ��
 with the � � �
random interleaver we can see that when we use the random interleaver we get lower bit�error
rates than we do when we use the block interleaver� Comparing the ��� � ��� block inter�
leaver with the ������� random interleaver we see that the di�erence in performance is bigger
when we use larger interleaver sizes� especially when the SNR increases� The performance for
the block interleaver does not increase very much� even though the size of the interleaver is
increased with a factor of 
�� With larger encoder memory� the performance for the block
interleaver increases more with bigger interleaver sizes� but the random interleaver is always
better� so there is no reason for using the block interleaver�

Another important parameter when using the iterative decoding algorithm is of course the
number of iterations� In Figure ��	 the in�uence the number of iterations on the bit�error
probability is illustrated� We can see that the e�ect of increasing the number of iterations is
larger with higher SNR ratio� i�e� the bit�error decreases faster with the number of iterations�
The �gure also shows that to reach su�ciently low bit�error levels we need more iterations at
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P
b

SNR 0.0 dB
SNR 0.5 dB
SNR 1.0 dB

Figure ��	� Diagram showing bit�error probabilities for di�erent numbers of iterations� �Two�
way algorithm� ��� �� random interleaver� m � ��

low SNR ratios than at high SNR ratios�

In Figure ��� there is a comparison between di�erent memory sizes for the two�way algo�
rithm using the same �� � �� random interleaver and �� iterations� We can see that the
memory � improves the bit�error rate faster with increasing signal�to�noise ratio compared to
the memory 	� but memory � has worse performance for low SNRs� This can be explained by
that we get longer burst errors with larger encoder memory� The simulations also show that
there is a limit where the curves �attens� the so called error �oor�
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Figure ���� Diagram showing bit�error probabilities for di�erent encoder memories� �Two�way
algorithm� ��� �� random interleaver� 
� iterations�

The next diagram� Figure ���� shows a comparison between the one�way and the two�way
algorithm� The performances of the algorithms are approximately the same� The one�way
algorithm has the advantage over the two�way algorithm that the code sequences do not have
to be terminated� i�e� we do not have to send the terminating bits� Because of this the one�
way algorithm can have better performance than the two�way algorithm when small blocks
�interleavers� are used�

Figure �� shows the bit�error rate for the one�way algorithm with window sizes � � �� �� and ���
We can see that the bit�error rate improves with bigger � � In Figure ��� we could see that with
� � �� the performance of the one�way algorithm is the same as for the two�way algorithm�

The in�uence of the window size � for the one�way algorithm is shown in Figure ���� Here�
like in Figure ��� we can see that larger � improves the bit�error rate� but here we also can
see that the bit�error rate only improves up to a certain limit�
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Chapter �

Conclusions

In this thesis we have examined performance of di�erent decoding algorithms for the turbo
encoder� We have concluded that the one�way and two�way implementations have essentially
the same performance� The advantages of the one�way algorithm are that it can be imple�
mented in a pipelined structure and that it can be used for non�terminated codes� The main
disadvantages of the one�way implementation are that is uses more memory and has a longer
decoding delay than the two�way implementation�

We also found that the choice of interleaver is essential to get good performance� The inter�
leaver size should be as large as possible� The choice of interleaver size is a tradeo� between
better performance and longer decoding delay� The type of interleaver is also important�
Our results show that the pseudo�random interleaver is a good choice compared to the block
interleaver� Much e�ort has been devoted to �nding good interleavers for turbo�codes� but
it seems that the performance gain compared to the pseudo�random interleaver is small� or
as Wozencraft once said �You should choose the interleaver at random and avoiding being
unlucky��

Choosing the size of the encoder memory optimally� also improves the performance but larger
memory means higher decoding complexity� Our simulations show that the optimal memory
size does not need to be the largest� With very large memory sizes the performance decreases
due to longer burst errors�

From our research we can conclude that turbo codes is an e�cient method to protect data
from errors� By increasing the interleaver size we get better performance without increasing
the complexity in the decoder� only the delay and the memory consumption are a�ected� The
number of iterations should be optimized for di�erent SNR ratios to save power� A compari�
son between the iterative decoder and the Viterbi decoder show that the iterative decoder has
better performance but longer delay at similar complexity�

	



Appendix A

Tables

A�� Simulation results for the two�way implementation
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