
ESC-400: Rationalizing the Platform Perimeter
Linus Walleij
ST-Ericsson
Linaro

The Platform Perimeter

As a consumer of a System on Chip (SoC) when constructing di-
verse embedded systems you seldom see what is happening to the
community-maintained Linux kernel from your perspective. What
is the community doing that I should be aware of? What is happen-
ing out there that will help me or could ruin my business or make
me look bad if not taken into account.

For this session I assume that the embedded engineer will be
interested in getting the grips of the platform perimeter. I define
this as the sum total of the electric border between your core SoC
system (or a large pre-packaged chipset) and the peripherals found
in a certain design, i.e. a PCB or similar arrangement.

We will not go into details on what is on either side of the perime-
ter boundary, i.e. not discuss about DMA in SoC:s on one hand or
the best way to implement a LED or gyroscope driver on the other
hand – instead we will discuss the perimeter as such.

The scope will be what has happened “recently” in the Linux
kernel, with some rather personal selection of important points re-
garding a few related subsystems.

An illustration can be found in figure 1.

Push for Device Tree

All SoC vendors active in the Linux kernel are currently aware
about a major push from the ARM SoC architecture maintainers
to migrate their systems to use the Device Tree infrastructure. If
you have previously used SPARC or Power PC this concept will be
familiar as it is a spin-off from OpenFirmware.

The Device Tree provides an hierarchical representation of the
devices in the system and a database to query for any configuration
including IRQ lines, GPIO pins, register memory ranges, voltage
regulators and any other so-called “platform data” the device may
need.

This has come about for practical reasons as the ARM portion
of the kernel tree was growing wildly. It can be seen as a way
to achive with external means what things like Plug-n-Play BIOS,
ACPI DSDT, or the PCI configuration space is providing in other
contexts – a means to ask a central registry about the hardware at-
tached to a system. When such a feature has not been engineered
into the hardware of the system, we can still provide it in the form
of a Device Tree.

For system designers, users of SoC:s, the Device Tree is yet to
deliver its promised benefits, but the idea is certainly to describe
any hardware attached around the platform perimeter using them.

Thomas Abraham has made an excellent presentation about how
to go about enabling Device Tree for a certain system which can
be found in the references section. As a consumer of SoC:s, you
should normally request your vendor to provide a basic Device Tree
implementation for your system.

The implementation of Device Tree provides a de facto standard-
ization of the so-called bindings that define the structure of any con-
figuration data for a certain device. These bindings are intended to

be neutral in character and useful also for other operating systems
than Linux.

Device Model

The devices instatiated by the Device Tree or by the more tradi-
tional board files should nowadays be all dynamic, not the result of
a static struct platform device but rather a kmalloc():ed
structure in memory.

Devices should use the devm kmalloc() and similar facilities
to let the device core free up memory as drivers are removed from
the system for example.

Runtime Power Management or “runtime PM” has been solidi-
fying the last year but may still be lacking in certain spots. Vendors
are now migrating custom solutions to hammering off clocks and
regulators to the runtime PM framework.1

Devices can nowadays be collected into power domains which
are used by the runtime power management core to reference count
the users of a certain domain and makes it possible to shut entire
regions of a system down whenever the domain is unused. This is
primarily intended for silicon complexes but can be used for any
devices powered off the same power terminal.

Peripheral Buses

Among the peripheral buses we find I2C and SPI have been pretty
silent and mature with only casual refactoring taking place.

The Multifunction Device (MFD) subsystem has been well es-
tablished as a device nexus responsible for spawning child devices
and arbiting and marshalling calls when devices on peripheral buses
contain several functionality blocks, each to be handled by a sepa-
rate subsystem in Linux. The archaic example of an MFD device is
a mixed-signal circuit exposing its software interface as a hetero-
geneous I2C register range.

A significant change that can improve the use of devices on slow
peripheral buses devices is regmap in drivers/base/regmap that
comes from the ALSA SoC part of the kernel.

The regmap provides a unified marshalling and caching mecha-
nism to get away from all custom code providing such facilities for
example if the target register is 16 or 32 bit wide yet marshalled
over an 8-bit I2C bus. It can be used for any devices on slow links,
including Multifunction Devices (MFDs) that present themselves
as remote, large register ranges.

A new peripheral bus named High-Speed Synchronous Serial In-
terface (HSI) has appeared and will likely soon make its way into
the kernel. A patch set has been devised by Carlos Chinea from
Nokia and was proposed for inclusion into Linux v3.3, but not
pulled in. It will likely be accepted in coming kernel releases.2

A new peripheral bus named SLIMbus has also appeared, and
in august of 2011 Sagar Dharia from CodeAurora presented a new

1See e.g. http://www.elinux.org/images/1/18/Elc2011_damm.

pdf for an introduction to runtime PM.
2See: https://lkml.org/lkml/2011/6/10/280

Embedded System Conference



2 • Linus Walleij

Fig. 1. The Platform Perimeter

subsystem in drivers/slimbus for this bus. However nothing has
been heard from it since.3

GPIO and Pin Control

GPIO and pin control have been pretty busy lately. We have moved
many of the ARM GPIO drivers out of their hiding in the arch/arm
hierarchy and would like to refactor GPIO to use more exclusively
the struct gpio chip facilities in the kernel.

The Pin Control subsystem has been created to handle aspects of
pins that cannot fit well with either GPIO or struct irq chip.

For example the Pin Control subsystem is intended to standard-
ize first and foremost pin multiplexing as is common practice in the
resource-constrained world of SoC packaging solutions. However
it will also centralize and define how to handle the knobs avail-
able in certain SoC pin arrays to bias pins, select drive strength, set
schmitt-triggering, configure slew rate or other electrical character-
istics not really related to any existing subsystem.

Regulators

The regulator subsystem is pretty mature and has recently been aug-
mented with Device Tree bindings.

It has been established that the regulator subsystem wants us to
write drivers so that any power supply lines into the component are
requested at proper places in the driver. The basic rule is that if
a power pin happen to be wired to an appropriate voltage in your
system, assume that the next person using the same component will
connect it to a software-controlled regulator, so have your driver
issue regulator get(dev, ’’foo’’) for any voltage terminal
on your packe, and atleast provide a fixed regulator for that voltage
in your board file or device tree.

MMC/SD/SDIO

The MMC, eMMC, SD card and SDIO subsystem in drivers/mmc
has seen a lot of stepwise improvement recently. A special point
of interest to the platform perimeter are the SDIO portions of the
subsystem.

The protocol spec deviation fixes, pure bugs, and gradual im-
provement that have aggregated in this subsystem over the last year
is significant, to the point of vendors back-porting the entire MMC

3See: http://lwn.net/Articles/454945/

subsystem onto older kernels to get proper support for these de-
vices.

Several of the fixes are performance-related, such as Per Förlin’s
back-to-back pre- and post- hooks to speed up cache map-
ping/unmapping of buffers during intense transfers, or Stefan Nils-
son’s fixes for pushing SDIO transfers into larger block chunks.
The former give some improvements for MMC/SD cards whereas
the latter will affect large-volume SDIO transfers such as for
WLAN devices on SDIO.

On a longer term is work related to aligning the block layer or file
systems in Linux to the characteristics of contemporary MMC or
SD cards (but this does not really concern the platform perimeter).

Input and Extcon

The input subsystem is mature and has gained a lot of drivers the
last year. The main notable trend is that touchscreen vendors (or
their customers as proxies) have started to submit drivers for em-
bedded system incarnations of touchscreens following the rise of
Android.

Another effect from Android is the creation of the Extcon sub-
system by Samsung engineer MyongJoo Ham. This subsystem is
still in the works but will handle connection of external connec-
tors such as USB cables (primary example “chinese chargers”), au-
dio/video plugs, portable handsfree and HDMI connectors. These
have previously been attempted by the input subsystem but are now
forming their own subsystem.4

This initiative is a reflection of a larger trend of bringing good
ideas from Android into the mainline Linux kernel as vendors
struggle not to have to support multiple codebases.

References

Thomas Abrahams excellent presentation of how to enable Device
Tree on an ARM board, as well as my own presentation of the pin
control subsystem from the Embedded Linux Conference 2012 can
be found here:
http://www.elinux.org/ELC_2012_Presentations

4See: https://lwn.net/Articles/483965/

Embedded System Conference


