
ESC 2012: Rationalizing The Platform Perimeter
Linus Walleij

 Worked for some years with people trying to
 make the best use of the Linux kernel
● Noticed a lot of discrepancies between model and reality, long lead time
 from initiatives in the community to trickle down to embedded vendors
● Created the pin control subsystem in the Linux kernel to
 complement GPIO
● So I want to take this opportunity to try to present the state
 of relevant subsystems in the Linux kernel when working
 with the platform perimeter – what has been done so far and
 what is coming next
● The kernel changes relevant to users of SoC:s as opposed to the
 producers manufacturing the silicon
● See it as a ”perimeter report” as compared to Jon Corbets
 ”kernel reports” given at regular intervals about the state of
 the kernel at large

Background

Recap: Linux device model
● Devices in Linux are defined by struct device, which may be subclassed
 by being a .dev entry of a sub-class device such as struct i2c_device
● Devices are usually registered to a bus
● Push to get rid of “class” and “type” device containers
● Introduction of reference-counting “power domain” concept in
 drivers/base/power/domain.c
● Push to stop using any statically declared struct device or derivates
 (struct platform_device, struct amba_device)
● Push to use Device Tree for registering all devices rather than board
 files – especially for the overpopulated ARM arch tree
● Push to use devm_* prefixed allocators etc to propely reference count
 and free especially memory allocated by device drivers
● Push to try to solve probe order problems currently often solved by
 pushing devices to different initlevels by using deferred probe which
 is basically a “probe me again, later” mechanism that will iterate the
 probe until dependencies are met

Device Tree Push (part 1)
● When the arch/arm/* tree was small, there were a few machines
 supported, mainly the RISC PC and then the StrongARM machines
● Then a lot of machines appeared and code was grouped into
 mach-foo/* directories with plat-foo/* directories to consolidate machine
 families
● Then things got out of hand:
 - No proper review of code going to machines
 - No active push to consolidate and refactor code across machines
 - All were “necessarily different” and thinking in their own silo
 - Merge conflicts and churn in the tree upsets Torvalds
● Quick fix: strip down defconfigs to the bare minimum deleting 194000 LOC
● ARM subarchitecture maintainers get together and discuss the problem
● One part of the problem is the “board files” – mainly static defines of the
 platform devices and their configuration

Device Tree Push (part 2)
● Device Tree presented as part of the solution – if we can get the data
 out of the kernel, the complexity can be reduced and/or externalized
● This should be easy – because experience shows it was easy for
 Power PC
● Strategy:
 - New platforms: only allow Device Tree probing
 - Legacy platforms: create new board files with the suffix -dt, move everything
 over then eventually delete the old board files
● Not as easy as it seems – Power PC was taken as model, but the
 PPC business was pretty closed and the producers had control over
 the software implementation process for their devices
● ARM was more chaotic and less keen on software standardization, also
 lack of volunteers and assignees to do the transition hampered progress
● So developers are still struggling with this
● However now it is happening due to the ARM SoC tree gatekeepers
 strong push and the backing of Linaro behind the Device Tree push
● Rely on Device Tree on a per-platform basis, not “one size fits all” for now

/* mach-foo/board-foo.c */

unsigned int mmc_status(struct device *dev)
{
 return !!readl(FOO_MMC_DETECT_REGISTER);
}

static struct mmci_platform_data mmc_plat_data = {
 .ocr_mask = MMC_VDD_32_33|MMC_VDD_33_34,
 .status = mmc_status,
 .gpio_wp = -1,
 .gpio_cd = -1,
};

static struct amba_device uart_device = {
 .res = {
 .start = 0x1000,
 .end = 0x1000 + SZ_4K - 1,
 .flags = IORESOURCE_MEM,
 },
 .irq = { 1 },

};

static struct amba_device mmc_device = {
 .dev = {
 .platform_data = &mmc_plat_data,
 },
 .res = {
 .start = 0x2000,
 .end = 0x2000 + SZ_4K - 1,
 .flags = IORESOURCE_MEM,
 },
 .irq = { 2, 3 },

};

static struct amba_device *amba_devs[] __initdata = {
 &uart_device,
 &mmc_device,
};

static void __init foo_init(void)
{
 int i;

 for (i = 0; i < ARRAY_SIZE(amba_devs); i++) {
 struct amba_device *d = amba_devs[i];
 amba_device_register(d, &iomem_resource);
 }
}

MACHINE_START(FOO, "Foo Machine")
 ...
 .init_machine = foo_init,
MACHINE_END

/* mach-foo/board-foo-dt.c */

unsigned int mmc_status(struct device *dev)
{
 return !!readl(FOO_MMC_DETECT_REGISTER);
}

static struct mmci_platform_data mmc_plat_data = {
 .ocr_mask = MMC_VDD_32_33|MMC_VDD_33_34,
 .status = mmc_status,
 .gpio_wp = -1,
 .gpio_cd = -1,
};

struct of_dev_auxdata foo_auxdata_lookup[] __initdata = {
 OF_DEV_AUXDATA("arm,primecell", 0x2000, "mmci",

&mmc_plat_data),
};

static void __init foo_dt_init(void)
{
 of_platform_populate(NULL, of_default_bus_match_table,
 foo_auxdata_lookup, NULL);
}

static const char *foo_dt_match[] __initconst = {
 "arm,foo",
 NULL,
};

DT_MACHINE_START(FOO, "Foo Machine")
 ...
 .init_machine = foo_dt_init,
 .dt_compat = foo_dt_match,
MACHINE_END

The below is supplied in binary compiled form to the kernel from
the boot loader or attached to the kernel image:

/include/ "foo.dts"

/ {
 model = "Foo";
 compatible = "arm,foo";

 amba {
 uart@1000 {
 compatible = "arm,primecell";
 reg = <0x1000 0x1000>;
 interrupts = <1>;
 };

 mmc@2000 {
 compatible = "arm,primecell";
 reg = <0x2000 0x1000>;
 interrupts = <2, 3>;
 };
 };
};

Device Tree Push (part 3)
● SoC vendor should provide the basic SoC Device Tree in a file named
 “foo-soc.dtsi, then board files are created named “board-foo.dts”
● Example:
 - arch/arm/boot/dts/tegra20.dtsi – defines a SoC
 - arch/arm/boot/dts/tegra-ventana.dts – defines a specific board
● Through the .dts file you will one day be able to configure the entire
 platform perimeter – if everything goes well
● For example the SoC .dtsi file defines all the I2C buses, whereas your
 foo-board.dts file define all the devices that sit on the I2C bus
● You will still have to write drivers for all devices and compile them into
 your kernel or as modules ...
● Device Tree does not remove hard work, all it does is help a little bit
 with structuring the board files and keeping their configuration outside
 of the Linux kernel

I2C [drivers/i2c/*]
● Very mature subsystem, mainly seeing maintenance of bus drivers
● Regmap support in drivers/base/regmap/regmap-i2c.c
 (more on regmap soon!)
● Runtime PM
● All bus drivers needs to be augmented for Device Tree support
● Chip drivers removed from the subsystem and into respective driver
 subsystem – only core I2C business live here now (completed by
 Wolfram Sang in 2010)

SPI [drivers/spi/*]
● Quite mature subsystem, missing common infrastructure
● Proposed patch to create a central message queue mechanism
● Regmap support in drivers/base/regmap/regmap-spi.c
 (more on regmap soon!)
● Runtime PM
● All bus drivers needs to be augmented for Device Tree support

MFD [drivers/mfd/*]
● Multifunction Devices loosely defined as central child device spawning
 and arbitration hub
● Natural nexus for Mixed Signal circuits such as PMICs exposing
 various analog electronic controls as an automaton
● Many of these devices are I2C or SPI devices or both
● The Mixed Signal circuits then spawn devices in regulator, ALSA SoC,
 LED, backlight, PWM, GPIO ...

Regmap [drivers/base/regmap/*]
● ALSA System-on-Chip (ASOC) engineers noted that their register access
 and caching mechanism was generally useful
● In theory suitable for any register range not memory-mapped but
 accessed by other means, primarily I2C and SPI
● Handles marshalling register accesses to say 16 or 32 bit registers using
 consecutive 8bit writes/reads on an I2C bus
● Handles registering expected default values to a large register map at
 boot so these do not need to be read up from hardware at all
● Handles caching of registers declared non-volatile
● Writes write through and updates the cache
● Reads-through on volatile registers
● Cache is stored in a rbtree
● End result is a speed boost on anything register-based that is handled
 over a slow peripheral bus that can benefit from caching and simplification
 and centralization of code for marshalling register access

GPIO [drivers/gpio/*]
● Big push to move any GPIO drivers out of the arch/arm/* hierarchy and
 down to the GPIO subsystem, some may remain
● We want to remove generic GPIO once designed for performance
 bottlenecks and have all drivers use gpiolib
● ARM users split in simple cases (just gpiolib) and
 “__ARM_GPIOLIB_COMPLEX” which provide custom access macros
 for example to be used early. Very limited number of users.
● One goal is to get rid of <mach/gpio.h> to compile a multi-platform kernel
● Generic Device Tree bindings in place for GPIO keys, leds
● Everything else will need Device Tree bindings

Things TODO on a longer term:
● We want to get rid of the global GPIO numberspace
● We want to rewrite the questionable userspace interface in sysfs and
 replace with /dev/gpio0 etc for the gpio_chip:s

Pin Control [drivers/pinctrl/*]
● New subsystem for handling pin multiplexing, pin configuration (push,
 biasing, drive mode, schmitt-trigger etc) and anything else that is not
 already handled by GPIOlib or struct irq_chip
● Has caused endless pain for system designers using off-the-shelf
 SoC:s over the years
● I just had enough of custom pin configuration and created a new
 subsystem for pin control
● Illustration on following page on what is pin control and what is GPIO
 or irq_chip for a certain IO Pad
● Migrated a number of platforms to use this instead of custom pin
 control implementations
● Device driver interface similar to regulators or clocks, drivers can get
 handles to pins (both individual pins and groups of pins) and put these
 into different states at runtime
● Working on generic pin states and Device Tree bindings as we speak

● Reads out High Speed Synchronous Serial Interface
● New subsystem in the works
● Used for connecting especially high-speed modems to SoC:s
● Nokias Carlos Chinea has created a subsystem
● Proposed for inclusion into Linux v3.3 but was not pulled in

HSI [will be drivers/hsi/*]

Regulators [drivers/regulator/*]
● Well-established and mature subsystem
● Device drivers increasingly using the regulators to get their voltages
● Deep integration into the MMC/SD subsystem
● Preferred design pattern for device drivers: if your device has any kind
 of voltage supplies, retrieve them with regulator_get(dev, ”FOO”); and
 define a simple fixed-voltage regulator even if they happen to be wired
 to correct always-available supplies on your system. Further down the
 road someone will inevitably connect the same input to a
 software-controlled regulator
● Finalized Device Tree bindings for core regulator descriptors

MMC/SD/SDIO [drivers/mmc/*]
● Well-established and maturing as we speak
● Several large patchsets for supporting new eMMC and SD specs
 progressing in an incremental manner – if you need any one
 particular feature you need to worry else business as usual
● Numerous SDIO fixes the last kernel releases to get e.g. WLAN
 adapters attached to SDIO to work properly with odd packet sizes
● Several host drivers may still have severe SDIO problems – beware!
● All host drivers need to be augmented with Device Tree bindings,
 but that's not a perimeter problem!

Input subsystem [drivers/input/*]
● Well-established and mature subsystem
● External connectors moving out of the input subsystem and into
 the Android-derived “extcon” subsystem in drivers/extcon/*
 initiative driven by MyungJoo Ham from Samsung
● Extcon will be used for plug-in events of USB cables (i.e. for classless
 USB charging “chinese charger”, audio-video-HDMI jacks
● Major embedded touchscreen vendors especially Synaptics increasingly
 dedicated to supporting Linux, also in the mainline kernel (maturation)
● GPIO keypads have Device Tree bindings, everything else especially
 anything custom needs new bindings

On the other side of the wire
● Industrial I/O (IIO) subsystem is gaining traction in staging, need to
 move into the drivers/* proper – especially crucial feature: timestamped
 measurements such as needed for industrial control but also for say
 augmented reality
● All drivers everywhere need to be augmented with Device Tree bindings

THANK YOU

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

