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Abstract

Most embedded systems manufactured today will involve a microproces-
sor with some associated computer program known as its firmware. To this
date, most firmwares have been deployed using custom protocols. This
thesis seeks to investigate a number of de facto and de jure standard pro-
tocols that can be used for firmware loading across the Unified Serial Bus
(USB). It is found through prototyping that a small, embedded network
is a viable and scaleable solution for loading firmware files into embed-
ded systems. Using this network, firmware files may be distributed across
subsystems in a secure, fault-tolerant manner. The solution is compatible
with current software signing schemes but must be scrutinized for security
vulnerabilities.



Abstract

Flertalet av de inbyggda system som tillverkas idag innehåller en mikro-
processor och ett tillhörande datorprogram som brukar kallas dess firmware
(ung. “stabilmjukvara”). Hitintills har sådana mjukvaror mestadels la-
grats i systemen med hjälp av olika specialskrivna, skräddarsydda pro-
tokoll. Detta examensarbete går ut på att undersöka ett antal de facto-
och de jure-standarder för protokoll som kan användas för att lagra så-
dan “firmware” med hjälp av Unified Serial Bus (USB). Genom utveckling
av en prototyp visar det sig att ett litet, inbyggt nätverk är en framkom-
lig väg och ett skalbart alternativ för att lagra “firmware” i inbyggda sys-
tem. Genom att använda detta nätverk kan “firmware” på ett felsäkert vis
skickas till olika delsystem med bibehållen integritet. Denna lösning är
kompatibel med vanliga mjukvarusigneringsmetodiker men måste hård-
granskas för att finna eventuella säkerhetsluckor.
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2 Introduction

It’s not that we use technology, we live technology. Technology
has become as ubiquitous as the air we breathe, so we are no
longer conscious of its presence.

– Godfrey Reggio1

The world has changed. The natural habitat for our species is no longer
nature: it is technology. I have come with great regret to this conclusion.
Regret is indeed the word; other people view technology as outright evil,
often seeing it as serving the same corruptive influence over the ’noble
savage’ as Rousseau saw in the ’barbaric civilization’ of the 18th century.
(But such a view is still too narrow: technology is not transforming the life
of the individual human or even man the species, it is transforming the
entire ecosystem of this planet.) Others yet, will claim that technology is
the source of all good, and those are known as extropists and transhuman-
ists. I still cannot decide for which camp breeds the worst crackpots, and
will stay with my regret.

1Godfrey Reggio is the director of Koyaanisqatsi (1983) and recently Naqoyqatsi (2002).
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The embedded system lies at the heart of this change. When we say system
we mean an artificial system of digital electronics. We know it is a digi-
tal automata, most typically containing a microprocessor. It is a special-
purpose digital machine. The general trend of embedded systems is that
they are decreasing in size and increasing in complexity and functional-
ity. The embedded system is built into something else, typically an artifact
serving a special purpose.

The first embedded systems in a more general sense may very well
have been mechanical regulators and other such gimmicks studied by the
scholars of automatic control. The first embedded computer system was,
as far as I can tell, the Apollo Guidance Computer deployed within the
Apollo spacecrafts during the 1960s.2 It was developed by Charles Stark
Draper, MIT Instrumentation Laboratory[24]. Sweden was not far behind,
embedding the CK37 computer in the AJS Saab37 Viggen fighter airplane,
developed by Datasaab only a few years or even months after the Apollo
Computer[5].

The ghost in the machine of an embedded system is its firmware – a
piece of software tailored for running the system. (Later in this Section
we will make a more formal definition of what we mean by firmware.)
Getting the firmware into the system was once a problem for a few se-
lect software engineers, working closely with the system. It would be
installed at fabrication or even hard-coded into custom circuits (today
known as ASIC:s, Application-Specific Integrated Circuits). It was small,
non-replaceable, written once and running in the system until its retire-
ment.

Recently, the nature of firmwares have changed: they are no longer
fixed at fabrication: instead they are loaded over and over again: they are
large and bug-ridden so end-users often have to upgrade the firmware of
their products in the field. Developers at companies producing embed-
ded systems repeatedly reprogram the firmware in iterative cycles during
product development, even to the point of wearing out the semiconductor
electronics storing the program.

As a result, the process of loading firmware has become an increas-
ingly important issue. This thesis is about firmware loading, and how we
shall be able to standardize protocols used in this process and lift firmware
loading to a higher level.

2Though some would point out certain World War II-artifacts as embedded systems,
such as digital machines as Bletchley Park, e.g. the Polish “Bombes” used by Alan Turing,
the Colossus special-purpose computer etc. The analog computer used in the German V-2
rockets may also be considered as part of an analog embedded system and so on.
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2.1 Reading advice

The structure of this thesis is as follows: after this introduction follows a
definition of firmware. After this a separate Section, 3, deals with firmware
in the context of embedded systems, and subcomponents such as Boot
ROM, firmware loader etc. If the reader feels confident in these areas, the
inaugural Sections may be skipped.

The next Section, 4, will introduce the goal of this thesis work, and
must be read in order to understand the general structure and meaning of
the thesis. It also defines the frame for the prototype described in secion 9.

Section 5 will describe the Universal Serial Bus (USB) as used in embed-
ded systems. Knowledge in this subject is not yet commonplace among
electronics and computer engineers, but a reader who already knows the
subject well may just as well skip this Section and proceed to Section 6.

Section 6 will discuss the Device Firmware Upgrade Class, and also
why it has not been used in the present thesis. This class has its virtues and
should be understood by anyone seriously interested in firmware loading.
This Section is important to read in order to understand the rest of the
thesis.

Section 7 will present the low-level and mid-level infrastructure that
was finally chosen for the prototype implementation. This Section is a
large and necessary read.

No computerized systems today are created without careful security
considerations. For this reason Section 8 briefly describes the security is-
sues identified within embedded systems in general and networked em-
bedded systems in particular. The lessons learned from this Section di-
rectly applies to the next Section, 9, which describes the prototype imple-
mentation of a networked firmware loader.

In Section 10 we finally conclude the thesis and findings.

2.2 Firmware

In order to understand what is at the heart of this thesis, we have to define
what we mean by firmware. In the context of this document, firmware will
refer to:

A software program for an computerized embedded system,
consisting of executable code in a format suitable for the CPU
(or multiple CPU:s and accelerators3) of a certain computerized

3By accelerator we mean a small custom silicon device or IP-component external to the
CPU(s) and dedicated to a certain function such as, for example, iDCT decoding.
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embedded system, activated at normal start-up (bootstrapping)
and executed by the CPU.

Other, broader defitions are possible, for example this one from the
USA Federal Standard FS-1037C[15]:

Firmware: Software that is embedded in a hardware device
that allows reading and executing the software, but does not al-
low modification, e.g., writing or deleting data by an end user.

The firmware may be a single-threaded4 program running in an execu-
tion loop, interspersed by hardware-triggered interrupt handling routines
(IRQ handlers). A more complex embedded system will typically have a
firmware containing a real-time operating system facilitating preemtible
task-switching and priority scheduling of different tasks. Such systems
have names like OSE, VxWorks or eCos. It may just as well even be a fully
POSIX-compliant operating system such as µCLinux.

The firmware will always contain device drivers facilitating the periph-
eral devices connected to the embedded system through hardware ports
and visible to the software developer as memory-mapped or software port
oriented registers.5

The firmware may or may not include FPGA configuration streams for
configuring silicon at start-up, such as is used in abundance for prototyp-
ing and research, and getting more and more common also in deployed
embedded systems. This case could be called firmware-in-firmware and
also blurs the line between hardware and software.

3 Firmware in Embedded Systems

The firmware in a modern embedded system is currently just a simple
binary file6 that is either hardcoded into the system ASICs or programmed
into a system PROM, EPROM or E2PROM (Flash ROM) at manufacturing
time.7 Some devices will even place the firmware on an intrinsic hard disk
and have it loaded into RAM memory at boot time.

4“Single-threaded” is of course a retronym: in the beginnings of Computer Science,
nobody knew about threads.

5Most modern I/O is memory-mapped, only certain legacy architectures still rely on
software ports.

6With the word file we understand an ordered sequence (stream) of bytes (octets) typ-
ically running from low to high addresses.

7PROM is Programmable Read-Only Memory whereas the prefixes Erasable and Electri-
cally Erasable make up for the rest.
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All firmware that is not hard-coded into ASICs and reside in discrete
components is possible to replace after manufacturing, using more or less
sophisticated methods.8

If the firmware resides in an electrically reprogrammable memory type
(E2PROM or hard disk) and the hardware has connected the apropriate
erase and write signals9 to the hardware/software interface (memory-mapped
registers and the like) it can be reprogrammed by a computer program
running in the system.

If either the Boot ROM (see following Section) or the firmware itself
supports such programmatic control of the erase and write signals, and ad-
ditionally opens up an external I/O channel for incoming files adhering to
some specified protocol, the firmware can be reprogrammed using another
system such as a PC workstation (a desktop computer) with the apropriate
cabling. Such a program, or component in the firmware or Boot ROM, is
known as a firmware loader (see 3.2 on page 9).

The current firmware upgrade or install scenario, recognized from in-
dustry, consists of an embedded system with a single CPU downloading
a file with firmware from a host system over some simple communication
link such as a serial port.

However, many of the embedded systems created today have multi-
ple CPU:s. Sometimes the other CPU:s are slave processors, like a Digital
Signals Processor (DSP), or a specialized controller. These are often con-
figured at Boot time, using some specialized hardware mechanisms which
make it possible for the main CPU to halt the slave CPU, send a small
program to the memory used by this CPU, and reset the slave CPU. The
firmware for the slave CPU:s are thus effectively a part of the firmware for
the main CPU. Such slave processors thus take the role of a peripheral that
can be controlled by the master CPU.

Several systems have however already emerged that feature multiple
master CPU:s, which may share a common bus or communication link,
but which boot independently and work autonomously. In this scenario,
it is not so certain which CPU should take care of firmware loading for the
other, or if the firmware should be upgraded independently for each CPU.
Also, in the near future, most of the electronics and computer industry
recognize a scenario where embedded systems have several CPU:s on a
single die, forming a multiple-processor System on Chip (SoC).

With the number of interdependent processors in an embedded system
8A hard-coded ASIC could of course also be replaced, though the cost for doing such

operations usually exceeds that of building an entire new system.
9These signals are used here to denote the process of replacing memory or hard disk

contents.
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ever increasing, the need for a clear standard on how firmware is to be
loaded into the different CPU:s arises. If the systems are to be hindered
from growing into the ever more complex cobweb of a Rube Goldberg-
machine,10 abstraction levels and standard protocols desperately need to
be built.

Whereas the present thesis mainly deals with the scenario of a desktop
computer connected to a single-CPU embedded system for firmware load-
ing, the concepts developed aspires to be scaleable to embedded systems
with several independent CPU:s. See further Section 6 on page 20.

3.1 Boot ROM

In practice, the firmware of a complex embedded system is not a single
file in some storage, but two files in two different storage areas. The first
part is always available when the system is powered up, and typically
involves setting the program counter of the main system CPU to a hard-
coded address in a small ROM which resides either on a printed circuit
board (PCB) or inside an ASIC. This part is generally referred to as a Boot
ROM or BIOS an acronym for Basic Input-Output System.11

The second part constitutes the main firmware and may need to be
loaded into main memory by the Boot ROM.

An alternative approach is to construct an ASIC with some special-
ized state-machine, which halts the CPU until this specialized machine
has had the opportunity to initialize some memory with a firmware from
some external source, and then sets the program counter of the CPU to
this firmware block and unhalts it.

As most engineers do not want to rely on executable firmware being
readily available in the systems solid state memories or hard disks, such
Boot ROMs almost always contain a simple firmware loader, i.e. a means
to insert code into the main memory from some kind of serial port or simi-
lar, and execute it. A common approach is to use a JTAG interface for such
firmware insertion,12 so that the Boot ROM is instructed to listen to the

10Rube Goldberg was a cartoonist, famous for his machines, often a complex pataphys-
ical device with a myriad interconnected components[25].

11The term BIOS actually refer to a ROM which, apart from Boot-up functionality, also
contain some basic Input-Output routines in machine code for e.g. writing text to I/O
ports or reading hard disk sectors from a certain interface.

12JTAG (which is actually the standard IEEE 1149.1) is an acronym for Joint Action Test
Group, a group at IEEE that standardized this port type. JTAG is essentially a 4-pin serial
port, originally intended for boundary scan of daisy-chained ASICs, but which has since
been used for all kinds of things in embedded systems, notably debugging.
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JTAG interface for incoming firmware at Boot time, and if such firmware
arrives, download13 it into the solid state memory or hard disk holding the
main firmware.

3.2 Firmware Loader

By a firmware loader we mean a small program for an embedded system,
loaded from the Boot ROM or from the operating system, running in a
single thread, and whose only purpose is to serve firmware installation
and troubleshooting capabilities to the embedded system.

The firmware loader is in most cases a part of the common Boot ROM
or the operating system, but it may just as well in turn be loaded on de-
mand from an external entity in order to keep this functionality from tak-
ing up valuable memory. This is especially the case when the loader has
large and diverse functionality; in such cases a simple loader in the Boot
ROM or operating system is employed to download the firmware loader
through e.g. JTAG into the RAM of the system.

Once there, the firmware loader can help out in reprogramming solid
state or disk storage with new contents, but also to do so selectively, and
provide data dumps and debug information from inside the system. An-
other area of concern for the firmware loader is to customize certain fea-
tures of the hardware or software by changing the contents of singular
memory locations scattered around the system. It may also contain diag-
nostic tools of the kind that need to be run outside the operating system.

4 The Task

When I was appointed this thesis work, the starting point was:

• I was given an embedded system with a single-threaded execution
ARM 9E14 CPU unit, a serial port and a USB port. (The peripheral
controllers had all been integrated into the same ASIC.)

13The words download and upload have an ambigous meaning. In the context of
firmwares, downloading is the process of installing firmware onto an embedded system
(so that the embedded system is “down the stream”) whereas uploading firmware means
copy the firmware that exists in an embedded system to the host system.

14ARM reads out “Acorn RISC Machine” and RISC reads out “Reduced Instruction Set
Computer”, 9E is simply the version. The instruction set of this processor is purposedly
similar to that of the 8-bit MOS Technology 6502 processor.
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• I was to locate standardized protocols to be employed for firmware
loading.

• I was to implement a prototype firmware loader using the existing
codebase and development tools for the embedded system, utilizing
the standard protocols that seemed fit.

• It was desirable that the firmware loader should be usable from a
host system without installing any extraneous drivers into it, e.g.
standards all-the-way in practice, not just in theory.15

On this system, firmware could be loaded using custom protocols over
both the serial and USB ports. The Section on implementation (Section 9
on page 46) will go into details about the actual implementation, whereas
the following Sections will deal mainly with theoretical aspects of the goal
set by this starting point.

I quite quickly decided to focus on solutions built on the USB bus (see
following Sections), since there has been a lot of productive standardiza-
tion work surrounding USB, and these standards had also been imple-
mented in several operating systems available off the shelf.

5 USB for Embedded Systems

USB has been developed partly as an attempt to create what is called a
“legacy-free PC”. This means that old, large and troublesome ports on
computers, like RS232 (serial), PS/2 (serial) or IEEE 1284 (Centronics, par-
allell) are to be phased out and replaced solely by USB. The numerous
USB-featured peripherals for the PC architecture introduced lately gives
at hand that this will also succeed.

Before we dig deeper into how the USB bus can be applied in firmware
loading, we must make a brief overview of the standard as such. When
you set out to use USB in a project, you quickly get overwhelmed by the
sheer size of this standard.16 The reference document specifying USB[20]

15Computer Scientific standardization suffers from a lot of unused (or even useless)
standards that have not been implemented anywhere else than in research labs. a bunch
of “standards” written by ITU-T (such as the Open Document Architecture) especially
come to mind.

16USB is a de facto standard, not blessed by any standards body such as the IEEE. The
USB Implementers Forum which supply the standard also pool and guide a number of
patents relating to this standard, so the standard is effectively controlled by the member
companies of USB IF.
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deals with all details of the USB bus at great length, and as such varies
from easy reading to unreadable. In particular, it spans at least three en-
gineering disciplines: mechanics (connector sizes and similar), electronics
(how signals are modulated on a media) and computer science (abstrac-
tion and protocol issues).

As my target system was given, the mechanical and electrical proper-
ties of the USB bus was secondary: what I needed to get at was the commu-
nication channel abstraction and protocol issues. For this purpose, Craig
Peacock’s USB in a NutShell[16] serves the purpose very well, as it gives
the basic details and reading instructions to help out in comprehending
the standard document.

Another excellent source of information for implementers is to try to
communicate with some USB devices using the libusb software library[12],
available for most operating systems. Looking into code written for libusb
will help implementers to grasp the high-level software structure in all
systems using USB. That said, we will try to pry out the basic knowledge
of USB needed to understand this thesis.

5.1 Low-level USB

The USB bus is a tree-like master-slave bus. The master of the bus is called
a host controller and is typically built into a desktop PC or similar. The host
controller is responsible for controlling all traffic on the bus, and slave
devices cannot initiate traffic on the bus themselves: instead the bus is
polled, one device at a time, and the devices (also known as functions) will
then have an opportunity to talk to the host controller.

The mechanical connectors of the USB cabling have been devised so
that they have an upstream end and a downstream end. Upstream means
in the direction towards the host controller, whereas downstream is in the
direction towards the attached devices. The path from host controller to
device can pass through several hubs, which fork the connections so that
up to 127 devices can eventually be connected to one and the same host
controller. A root hub always exist in direct connection with the host con-
troller.

The USB bus cable consists of four wires, two of these are for +5 V
power and GND, and the remaining two are a twisted pair17 named D-
and D+ that carry a NRZI18 signal. The power lines may be used for mod-
erately powering a device attached to a USB host controller.

17twisted pair simply means that the two wires are twisted around each other as to
cancel out any electromagnetic interference, i.e. crosstalk.

18Non-Return to Zero Inverted, this means that zeroes and ones are encoded in the
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The signal sent across the wires is divided into packets and prepended
with a synchronization sequence named SYNC, in order to synchronize
the phase-locked loop (PLL) at the other end of the cable. The SYNC se-
quence is followed by a packet ID signifying the type of packet, an ad-
dress for the device to be contacted, an endpoint number (we will describe
what this is later), a CRC19 and finally an end-of-packet (EOP) that ter-
minates the packet. The actual contents of the packet vary. The packets
are addressed to a certain device (an address which is assigned to each
device upon being attached to the bus). Erroneous packets are neither ac-
knowledged (ACK) or non-acknowledged (NAK); instead they are silently
dropped.

These packets can be sent at different data rates, whereof the full speed
rate (which was the highest available rate in the USB 1.1 specification) is at
12 Mbit/s, and the high speed rate, available from the USB 2.0 specification,
is at 480 Mbit/s.20

When a piece of data is to be moved across the bus, atleast three packets
are needed: TOKEN, DATA and HANDSHAKE (status). Each of these
packets have the features described in the previous paragraph. A train
of TOKEN, DATA, HANDSHAKE packages is called a transaction. (There
also exist transactions without any DATA packets, so this part is optional.)

The data transferred across the wires is split in maximum sized pack-
ets, which are bit-stuffed21 so that the bit-clocks do not loose track of the
binary stream. The packets are then transmitted in the DATA portion of a
TOKEN DATA HANDSHAKE packet train.

We do not need to go further into the details of these packages, it is
enough to conclude that they are closely related to the physical data car-
rying mechanism below it and already totally encapsulated on the next,
more abstract level. All USB traffic up to this level is typically handled by
electronics, not computer programs.

transitions on these wires, not in the signal levels themselves.
19CRC, Cyclic Rudundancy Check, is a method of verifying that the contents of a pack-

age was not damaged.
20USB 2.0 is backwards compatible with USB 1.1 so a USB 1.1 certified device is by

definition also a USB 2.0 certified device. What the average consumer recognize by “USB
2.0” is a device that supports the new high speed data rate, though this is not, techically
speaking, the definition of USB 2.0 — USB 2.0 is only a specification.

21Bit-stuffing means that the signal is encoded so that sufficiently many transitions
occur.
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Figure 1: This Figure illustrates that endpoints exist in the device, whereas
the directed byte-stream pipe will start or end in either the host controller
or the device.

5.2 Endpoints

The programmer utilizing the USB bus will almost exclusively deal with
software/hardware interfaces relating to so-called endpoints. Endpoints
are endpoints of pipes, and pipes are channels that can send directed byte
streams, just as the pipes known from Douglas McIlroys famous imple-
mentation of his pipes-and-filters framework employed in all POSIX sys-
tems.22 Bytes that are pushed into one end of a pipe will appear undam-
aged on the other end. Pipes are unidirectional, which means they are
either IN-type or OUT-type, where IN means INto the host controller (de-
vice → host controller) and OUT means OUT of the host controller (host
controller → device).

One end of an active pipe will always reside in the host controller,
whereas the other end will appear in the hardware registers of an attached
downstream device. Transmissions on a pipe will typically cause software
interrupts to occur in the device when data is appearing in an OUT end-
point or when an IN endpoint is polled for new data. (Remember that all
USB transfers are conducted by the host controller!)

Endpoints will only be defined by hubs and devices; the host controller
cannot define any endpoints. Thus you may say that endpoints only ex-

22Named pipes, RPC sockets, or TCP sockets share much the same characteristics.
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ist in devices and hubs, though host controller software will casually refer
to endpoints as if they existed at the other end of the pipe as well. (Per-
haps these should be called startpoints or something similar.) When some
host software instructs a host controller to read or write to an endpoint, it
means that it should communicate with the device having that endpoint,
not that the endpoint exists in the host controller. The situation is some-
what illustrated in Figure 1.23

USB can support 32 different pipes for each attached device: 16 in-
bound IN pipes numbered 0 to 15 and 16 outbound OUT pipes numbered
0 to 15. There may be up to 127 devices attached.

Several silicon vendors have created IP-blocks for USB controllers that
implement all functionality up to endpoint abstraction. These IP-blocks
will differ mainly in the number of endpoints supported and the number
of higher-level functions supported by the block. USB IP-blocks some-
times come with a PHY i.e. a physical interface to the wire, and sometimes
not. The high-speed data rate of 480 Mbit/s supported by the USB 2.0
specification typically requires an external (partly analog) PHY, and a stan-
dard known as USB Transceiver Macrocell Interface (UTMI) has been de-
veloped for these PHY components. For the older, backwards-compatible
USB 1.1 specification, all of the PHY can be incorporated into silicon and
only an external mechanical connector is needed.24

There are also IP-blocks for the even more complex host controller part
of the bus, which is responsible for scheduling transactions on the bus and
polling each device. These are known as host controller devices and only
a few standard discrete components and chipsets have appeared on the
market, bearing such names as OHCI, UHCI and EHCI.25 Embedded host
controllers also exist. These are not very interesting in this context, and
will not be treated further.
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Figure 2: A UML diagram describing the basic relation between different
USB entities.

5.3 Endpoint Abstractions

USB implementers could have stopped at unidirected pipes and endpoints,
but have (luckily) chosen to abstract pipes into a higher level framework
of device objects, which have the basic structure found in Figure 2.

What we can see from the Figure is that the pipe endpoints, which are
the only communication channels that actually exist, are grouped into a
hierarchical scheme, with the exception of one endpoint, endpoint 0. End-
point 0 OUT (host → device) and endpoint 0 IN (device → host) must be
implemented by all USB-compliant devices. Devices will also have to react
to a set of standardized messages sent on this endpoint, known as SETUP
commands, which are essentially an 8-byte sequence optionally followed
by more data. The handling of these commands is sometimes carried out
by hardware, and sometimes by software.

The remaining (up to 15) optional endpoints belong to one of four
categories: CONTROL, ISOCHRONOUS, BULK and INTERRUPT. CON-
TROL endpoints are of the same type as endpoint 0 and typically endpoint
0 is the only CONTROL endpoint on a device. ISOCHRONOUS endpoints
are intended for high speed non-failsafe transfers, e.g. soft real-time appli-
cations such as streaming video. BULK endpoints are for huge (“bulky”),
non-time critical data transfers, and INTERRUPT endpoints are for spo-

23Sadly, documentation and source code relating to USB often confuse pipes for end-
points. In USB lingo, casually talking about an endpoint may refer to a pipe. (Ceci n’est
pas un pipe.)

24OPENCORES have an open source USB 2.0 high speed controller and an older USB
1.1 full speed controller that can be investigated by anyone interested in learning more
about USB IP-blocks, see http://www.opencores.org/

25OHCI is the Open Host Controller Interface from Compaq, UHCI is the Universal Host
Controller Interface from Intel, and EHCI, the only of the three to support high speed trans-
actions, is Extended Host Controller Interface, again from Intel.
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radic, high-priority transfers.26

Needless to say, data pushed or polled from endpoints will have to
be packetized and multiplexed by the low-level USB functions, typically
by hardware. The different types enable the host controller to schedule
endpoint data depending on their respective type.

As can be seen in Figure 2, endpoints are grouped into interface settings,
one of which is called the default interface setting, belonging to a certain
interface descriptor, and which must exist on every device implementing
USB functionality. A device may have additional interfaces (which may in
turn have several interface settings), described by their respective interface
descriptors.

Additionally, a USB device must support at least one configuration, de-
scribed by a configuration descriptor. In order for an interface descriptor and
its settings to be valid, they must have been described in a configuration
descriptor.

The configuration descriptor is in turn referenced from the top-level
device descriptor, which apart from defining available configurations, also
describes general properties for the device. There is ever only one device
descriptor for a certain device. Two unsigned 16-bit fields given in the
device descriptor are especially important: idVendor and idProduct.27 The
Vendor ID is assigned to each vendor producing USB devices by the USB
Implementers Forum, and the Product ID can be used any way the device
manufacturer seems fit. Some operating systems will use the combination
of Vendor ID and Product ID as a key for locating a suitable device driver
whenever the device is attached to the USB.

The recommended approach in the USB spec is that the operating sys-
tem shall examine the bDeviceClass (class code) field to see if there is a stan-
dardized way to communicate with the device (see next paragraph). If this
again fails, the operating system shall examine the respective interfaces to
see if any interface is of a standardized interface class, because parts of the
device may be using standardized protocols — this is illustrated in the De-
vice Firmware Upgrade class, which will be introduced in the next Section.
If this fails, a custom driver may be loaded with the idVendor and idProduct
numbers as a key. If this also fails, the system will typically report an error
to the user who just attached the device or just silently ignore it. (Note that
Microsoft Windows takes a different approach: it will test a few supported
device classes first, then immediately fall back on idVendor+idProduct keys.

26Note that INTERRUPT endpoints will in no way interrupt the traffic on the USB
bus, it simply means that the host controller will prioritize polling these endpoints with
regular intervals. Each INTERRUPT endpoint can also declare its desired poll interval.

27See the USB 2.0 specification[20] and Section 9.6.1.
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Windows will not look for interface classes at all.)
By presenting special values in the device descriptors’ one-byte bDe-

viceClass Class Code field (and additionally the bDeviceSubClass and bDe-
viceProtocol fields),28 the device may declare that it belongs to a special
class of USB devices. This means that its functionality and all related pro-
tocols are specified in a standardized class document from the USB Imple-
menters Forum (who create all USB standards). In an ideal world, all such
standard classes will be supported by all operating systems driving host
controllers without requiring additional system drivers or configuration[21].
We will look into some such class specifications later in Sections 6 and 7.1.
More often than not, you will find devices presenting the value 0xFF in
the bDeviceClass Class Code field, signalling that this is a vendor-specific
protocol and special software drivers are needed for the device to work.
The common device classes are devised to avoid this situation.

On top of the descriptors mentioned hithereto, there are functional de-
scriptors which describe certain functionality of the device, and string de-
scriptors which may be referenced by other descriptors to e.g. give an in-
terface a meaningful, human-readable name.

The rather complex object structure presented hithereto may seem to
the reader like a case of creeping featurism; a typical USB device will have
one configuration, which in turn has one interface descriptor with one inter-
face setting — the default setting. This interface setting will typically have
two endpoints: one inbound and one outbound of some type, so that the
device can send and receive data. However in the case of more complex
devices, e.g. a memory card reader combined with an ethernet firewall,
supporting normal and low-power mode, these descriptors and interfaces
have their use.

It should be mentioned that all the descriptors are in practice just a
stream of bytes, retrieved from the device by the host controller via special
SETUP messages on endpoint 0. The descriptors will then be interpreted
by the operating system running the host controller, which may in turn
load apropriate drivers.29 The different settings presented by the descrip-
tors, i.e. different configurations, interfaces and interface settings are also
selected by the host controller by sending special SETUP messages.

For the case where two embedded systems are to communicate with
each other, and no clear definition of which system will act as the host
controller, a special specification named USB On-The-Go has been created,

28Ibid.
29I have yet to see a host controller that is manouvered by something else than an

operating system.

17



but in this thesis we will only deal with “common” USB traffic.
As you have probably realized by now, it is almost implied by the USB

specification that the devices (functions) connected to the host controller
have to be some kind of embedded systems. All the complexity of the
higher levels in the USB protocol are ill adapted for implementation in
pure hardware state machines. Indeed, most if not all things you find
equipped with a downstream USB port will be embedded systems of some
kind.

6 The USB Device Firmware Upgrade Class

The most obvious standard choice for a firmware installation solution is
the USB Device Firmware Upgrade Class[23], also known by its acronym
DFU. This device class is devised to handle firmware upgrades for any
USB device via a standardized procedure.

The principal workings of this class are the following: during normal
operations, the device presents an additional interface descriptor beside
those that are used during the common operation of the device. It also
presents a functional descriptor, which gives some details about maxi-
mum transfer lengths and other DFU parameters. Apart from these DFU-
specific descriptors, the device may be of any desired class, or even vendor-
specific if need be.

The DFU interface descriptor has the interface class 0xFE (meaning
“application specific class”) and subclass 0x0130 and is to be selected when
the firmware is about to be upgraded. So during normal operations, the
DFU run-time interface is not selected. When the firmware of the device is
to be upgraded, the following happens:

• The DFU interface is selected by the host controller using a SETUP
command on endpoint 0

• The host controller issues a USB reset by way of a command, causing
the device to be given a USB address anew.

• When the device has been reset and addressed, the host controller
will request its descriptors again, a process known as enumeration.

30The subclass 0x01 really only tell us that DFU is the first time anyone has ever defined
an application specific subclass interface, which also partly explains why this standard
has not yet caught on, as nobody wants to risk being first.
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The device now presents a whole new device descriptor, using an id-
Product number different from that used during normal operations.31

It also presents a new configuration descriptor with the sharp DFU
interfaces.

• The “new” interfaces are used to download a new firmware to the
device.

• Once the new firmware is downloaded and verified, the host con-
troller issues another USB reset, causing the device to reenumerate
once again, assume its old idProduct and resume its normal opera-
tions.

This scheme has some obvious advantages: for example, the fact that
the host controller resets the device gives the device an opportunity to
not only change it’s device descriptor and interfaces, but also provides a
natural point to switch from the normal, multi-tasking operating system
to a single-threaded firmware upgrade mode inside the system, initiating
the program that was defined as firmware loader in Section 3.2 on page 9.

However, the Device Firmware Upgrade Class also has several down-
sides which make it apply only to a narrow class of quite simple devices.

The first downside is that it only use CONTROL transfers on endpoint
0. As most operating systems see this as low-priority traffic, only one
transaction will be scheduled to this endpoint in each USB timeframe, re-
sulting in a transfer capacity of just 64 kbps.32 With solid state memories
becoming faster and larger, the DFU threatens to become an irritating bot-
tleneck.

The second, big downside is that it is not inherently supported by Mi-
crosoft Windows[19].33 (Both GNU/Linux and Apple MacOS X support
it natively.) This could theoretically be easily overcome by simply imple-
menting a DFU kernel driver for Microsoft Windows outside Microsoft’s
domain, and supporting it separately. However the needed kernel inter-
action is quite massive, and it cannot be taken for granted that all neces-
sary kernel interfaces actually exists. Perhaps an abstraction layer such as
libusb could be employed to simplify the process.

31This is done to avoid conflicts with operating systems that use the combination of the
idVendor and idProduct fields to identify system drivers for a certain device.

32A newer version of the DFU is in the works, which will support BULK endpoints and
speed up transfers. Information from Morten Christiansen.

33Which is rather surprising given that one of the contributors to this standard, Tom
Green, comes from Microsoft.
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The third, more severe downside of DFU is that anything more com-
plicated than simply downloading or uploading a single firmware file
to/from a device is out of the question. No diagnostics, debugging, se-
lect uploading, configuration menus or other custom interfaces to the de-
vice firmware loader are possible to achieve using the DFU class only. It
is obviously intended only for end-users upgrading an opaque embedded
system.

These shortcomings could of course be solved by reworking and amend-
ing the DFU class, possibly defining an application layer on top of a more
generalized DFU interface. This would mean quite a lot of paper-work
and redoing a simple standard into something it was not intended for, so
another (more realistic) possibility would be to define an all-new firmware
interaction device class through the USB Implementers Forum. However,
the task posed for this thesis did not involve writing new standards or
custom protocols: the explicit goal of the assignment was to use present de
jure or de facto standards.

The fourth and final downside of the DFU when applied to complex
embedded systems is that it does not account for the development of exter-
nally and internally networked embedded systems. This fact is a turning
point for the following discussion and will therefore be treated in detail.

The need for networks between embedded systems, and between em-
bedded systems and host computers, is nothing new. This kind of func-
tionality is nowadays proliferating in common household objects such as
web cameras and broadband routers.

A more challenging scenario within the immediate future is the pres-
ence of networks within embedded systems, so as to communicate infor-
mation between different functional units.

Whereas traditionally, this communication has been sent across custom
buses such as an I2C or CAN bus,34 the recent rise in complexity of embed-
ded systems make a case for deploying higher-level networking protocols
as well, as a means to abstract away even more of these interconnections.
We are thus moving from ad hoc-programmed hardware-centered buses
towards a combination of hardware buses and higher level protocols that
help out in structuring the information flow. What we want to achieve can
be seen in Figure 3.

Apart from sheer complexity, other factors opt for constructing net-
works inside systems, and some peers have even started writing articles
about Networks on Chips, NoC:s[4]. The reasoning for switching from

34I2C is short for Inter-Integrated Circuit and CAN stand for Controller Area Network. For
a more in-depth introduction to these buses, see Wolf[26].
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Figure 3: The external view of a network named 10.1.1.0 between a host
computer and an embedded system, with a magnified system exposing its
networked subsystems. The implemented prototype delivers part of this
Figure: the host (10.1.1.1) and the system (10.1.1.2) but can quite easily be
expanded to maintain the full scenario of interconnected subsystems.
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common bus types to true networking both within systems and on highly
complex chips can usually be boiled down to the following points:

• Networking increase componentization (abstraction) in designs, which
is regarded as a good design pattern.

• Synchronization of buses between or within integrated circuits using
a single clock become increasingly troublesome because of skew at
high frequencies. Asynchronous networking can remove this obsta-
cle.

• Determinism in large systems is increasingly hard to maintain. Un-
foreseen glitches, errors and sync problems necessitate a fault-tolerant
transport mechanism, such as a network.35

Concerning the loading of firmware into embedded systems, address-
ing an ever increasing number of processor cores and memories will in-
creasingly trouble developers of firmware loaders. Networking the differ-
ent components of a system at a higher level and assigning each subsystem
an IP-address36 handily resolves this issue, as any high-level protocol may
be built on top of the TCP/IP stack,37 and distribution of firmware across
network peers may occur in parallell using routing techniques well estab-
lished and known from the field of computer communications theory.

The componentization provided by autonomous networked subsys-
tems is also good if the components are coming from different vendors,
as the network layers present a natural abstract high-level component in-
terface, for example remote procedure call protocols (RPC) may be used.
Figure 3 also demonstrates one of the subsystems as routing traffic to the
other subsystems. This construction only serves to route network packets:
from a network point of view, all subsystems are accessible on their own,
and you may immediately address a certain subsystem. This is good es-
pecially when subsystems are added late in development: they may then
be addressed without prior notification to other subsystems.

The DFU is not intended for this kind of scenario. The only way of
using it in a networked embedded system would be to equip the device
with a firmware loader that sets up an ad hoc firmware loading network
inside the device before receiving or delivering a firmware file over DFU,

35The interested reader can gain an insight into the kind of physical and analytical
phenomena presented by sub-micron design in Argonès et al[2].

36Internet protocols and IP-address will be discussed in the following Section.
37A stack is a colloquial term for the hierarchy of protocols present in a network protocol

suite.
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a file which must then be demultiplexed/multiplexed by a second portion
of Boot ROM code and then finally distributed across the system. This will
cut off the host computer from any possibility of acting as a network peer
and effectively employ the simple DFU protocol as a transport mechanism
for something it was never intended for. It is by no means certain that
the extended firmware functionality (configuration, selective upgrade etc.)
could be properly shoehorned into this transport container.

These limitation of the DFU class are so severe that other solutions had
to be sought when trying to solve the assignment given for this thesis.
One could imagine modifying or re-drafting the DFU to become a network
transport mechanism, but to no avail: a device class for communications
and networking has already been specified by the USB Implementers Fo-
rum, and the following Sections will deal with this mechanism in detail.
The task was also again to use existing standards, not write new ones, and
we thus switch our reasoning to a networked device context.

We shall briefly consider other alternatives to the DFU:

• One could possibly install a USB stack on each subsystem and let
each system be an autonomous USB function, addressed in turn by
the host controller. This would however require routing of the USB
bus signal layer across silicon, which is a subject of analog electronics
and not the easiest thing. It might be feasible by routing signals at a
higher level in the USB stack, but this may in turn violate the idea of
USB.

• One could imagine the firmware interface to be a file system and
present it using the USB Mass Storage Device Class. This approach
is similar to the configuration file system found in Linux’ /proc and
/sys file trees, and may be a viable alternative.

Having to focus on one solution for my prototype, I chose networking.
The main reason behind this choice was that TCP/IP networking opens
the possibility to use a web server in the firmware loader, so that a sim-
ple graphical user interface can be built using accepted Internet standards
only. File systems and USB buses do not inherently support user inter-
faces. We will illustrate this possibility towards the end of this report.

7 Networking over USB

Wise from the lessons of DFU shortcomings, we turn to the task of exter-
nally and internally networking embedded systems from the ground up.
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The most successful standard protocol for exchanging information over
a network is without doubt the Transmission Control Protocol / Internet
Protocol — TCP/IP for short. The merits and success of this protocol has
been well documented elsewhere[1]. When we talk about “networking”
in the following Section, TCP/IP networking is implied at some level.

Like all Internet standards, the TCP/IP protocol is documented through
a series of Request For Comments (RFC) documents. RFC 791 (IP), RFC
792 (ICMP), RFC 826 and 903 (ARP and RARP), RFC 793 (TCP) and RFC
768 (UDP) make up most of the protocol specification that will be consid-
ered in this thesis. All these RFC:s are available from the Internet Engi-
neering Task Force homepage38 and the reader is assumed to be fairly ac-
quainted with these protocols. A textbook such as Forouzan[9] may help,
but in general the RFC documents are quite readable by themselves.

The general idea here is to make the firmware loader program from
Section 3.2 on page 9 fully TCP/IP-enabled and recognized as a com-
mon network device. A problem with this approach is that we need to
devise some model for switching the device into firmware-loading-and-
networking-mode, and there does not exist a standard for this transition
like what we had for the Device Firmware Upgrade class. However, before
the DFU existed and in common practice, a user that wanted to upgrade
firmware on an embedded system would either activate a menu choice to
enter firmware loader mode, or enter this mode when the system is pow-
ered on, for example by holding down some special key available in the
user interface.39

While casually adding TCP/IP to embedded systems has been regarded
as bloating the system (taking up too much resources) in the past, recent
research has shown that this is not necessarily the case. This question will
be dealt with at length in Section 7.4 on page 35.

As was outlined for this thesis, a USB bus was to be used for building
a network of two peers: a host computer and the embedded system. This
network corresponds to the upper part of Figure 3, a network named 10.1.
1.0 with two IP enabled hosts: 10.1.1.1 (the host) and 10.1.1.2 (the embed-
ded system). This network is to be established over the USB bus.

To build a network over the USB bus may seem counter-intuitive for a
reader who is familiar with network concepts such as common Ethernet,
WLAN or token ring. USB is however a common means for peripheral
interconnection, and as such has served as a channel for network traffic

38See http://www.ietf.org/rfc.html
39For the device used in prototyping the solution as described in Section 9 on page 46,

an solution close to this was already available.
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Applications (daemons and clients)
m

Transport: TCP or UDP
m

Network: IP, ARP, RARP, ICMP
m

Data link: Ethernet without CRC
m

Data link: CDC or RNDIS
m

Data link: USB endpoint transfers
m

Physical: USB bus D- and D+ NRZI signal

Figure 4: The network stack employed for networking systems over the
USB bus.

not only to modems (serving as a simple serial line), but to complex Eth-
ernet controllers and the like. Part of the research for this thesis included
some examination of a USB-based Ethernet controller, in order to see how
different operating systems would handle this device. The network stack
employed in practice resembles Figure 4.

As can be seen, the concept of USB networking invariably involves
emulating Ethernet. This emulation is not only used when the attached
device is per se an Ethernet II controller,40 it is used even for such things
as USB cross-over cables i.e. a simple host-to-host network.41 It is also
used when connecting high-speed linked peripherals of almost any kind.
At some level, almost anything that is networked over the USB bus is an
Ethernet device, transmitting Ethernet frames. Ethernet frames, however,
have a CRC16 checksum, and this is not used when networking across the

40The frame format used for the Ethernet transfers are Ethernet II, not X.802.3 which is
almost invariably confusedly taken for being Ethernet II. Very few network adapters (if
any) use X.802.3 in practice.

41This is necessary for any host-to-host connection over USB: as you know every USB
cable has an upstream and a downstream connector, so it is in practice (and even more so in
theory) of course impossible to connect two hosts, having two distinctive host controllers
to each other, as there can be only one host controller for a USB bus. The solution is
an embedded system which acts as a slave device on two USB buses, bridging the gap
by making Ethernet frames transmitted on one bus appear as Ethernet frames received
on the other bus. The system is in practice molded into plastic with two upstream USB
connectors, powered by the USB bus and thus suspiciously similar to an illegal host-to-
host connector[3].
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USB bus, as the USB bus employs its own checksum and fault-recovery
protocols. Presumably, the Ethernet frame was chosen as a unit of transfers
because it is well known in industry.

The standard way of creating a USB network is to use the Ethernet
Networking Control Model of the Communications Device Class (CDC).
There exists, however, a rival protocol known as Microsoft RNDIS. The
following two subsections will elaborate on these two schemes at some
length.

7.1 Communications Device Class (CDC)

The standard42 way of building network links over USB is to use the Com-
munications Device Class, mostly known as CDC[22].

CDC supports protocols for connecting a large number of communica-
tion peripherals over USB, known as device models:

• A direct line (DL) model is used to connect devices to “POTS”, an
obscure acronym meaning plain old telephone service, listening in to
the electrical signals transmitted on the wire

• A datapump is the same thing simplified, whereas

• An abstract control model supports using the device with AT-commands.43

While the ACM model will accept commands, the DL model relies
on the host to supply all signal processing and intelligence, some-
thing that is known as “host modem” or “winmodem”

• Further, two models for ISDN44 lines are also specified.

Indeed, the CDC specification is possibly the most extensive and de-
tailed device class, as USB was supposed to replace the RS232 links previ-
ously used by most computerized telephones, faxes and modems.

Network interfaces are however not regarded device models, but are
more abstract in character and resemble low-level network protocols. The
two networking models supported by CDC is Ethernet and ATM (Asyn-
chronous Transfer Mode). The Ethernet model will enable two endpoints

42By standard we mean de facto as defined by the USB Implementers Forum, whereas
there is no de jure-standardization for these protocols. The USB Implementers Forum also
pool and control all patents related to USB technology.

43AT-commands are de facto modem control sequences once defined by the modem
manufacturer Hayes.

44Integrated Services Digital Network
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Figure 5: The Ethernet II frame without its trailing 4 byte CRC checksum, as
used in the USB Ethernet network model. A common mistake is to confuse
this simple frame, used in practice, for 802.3 frames, only used in theory.

Figure 6: The two peers of our virtual Ethernet network, with their IP-
addresses, Ethernet MAC addresses and four compulsory endpoints. (End-
point 0 is in both directions and thus counts as two.)

to exchange Ethernet II frames, whereas the ATM model will similarly en-
able the exchange of ATM cells. We will only look into the Ethernet model
here. The structure of Ethernet II frames is illustrated in Figure 5.

The network model interfaces use a split control/transfer mechanism:
SETUP messages sent by the host controller to endpoint 0 are used to con-
trol the network devices, whereas the actual frames are transmitted on
two BULK endpoints: one inbound and one outbound. Frames that are
to be “sent” onto the network by the host controller are written to the
BULK OUT endpoint (sans CRC checksum), and frames that appear on
the BULK IN endpoint are regarded as frames decoded by some “network
card” electronics and likewise appear without their CRCs.

The way the two network peers communicate across the USB bus is
illustrated in Figure 6.

If the Ethernetworked device is an actual network card, it will during
normal operations take the frames arriving at its BULK OUT endpoint,
add a CRC and transmit it on the physical Ethernet cable, and vice versa.
In our case, however, we want to connect a device as if it was a host on
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some “ethernet network” (which will only be a virtual concept), and thus
we decode the Ethernet frames that arrive at the BULK OUT endpoint and
conjure response frames by way of a TCP/IP stack. We will thus assume a
MAC address for our virtual network card (a 6-byte number)45 and report
this as the MAC address for IP-address 10.1.1.2 (our device) when it is
requested by an ARP broadcast. Notice that the host controller will also
have to assume a random MAC address: the frames arriving at the BULK
endpoints shall be complete, including the source MAC address field of
the Ethernet frame.

Apart from these two BULK endpoints, the device will of course also
support the compulsory endpoint 0 in both directions, totalling four end-
points. The control endpoint 0 is used for common USB handling and a
few special CDC Ethernet commands, related to setting packet filters and
retrieving statistics. If the device need to “talk back” to the host, an op-
tional INTERRUPT IN endpoint can be utilized, but most CDC devices
don’t.

The typical device implementing CDC will present a device descriptor
announcing that it belongs to the CDC class, containing one configuration
with one interface. This interface, however, has to support two alternate
interface settings: the default interface setting shall have none of the two
BULK endpoints (or the optional INTERRUPT IN endpoint) and the sec-
ondary interface setting shall have all the endpoints (except for endpoint
0) declared. The alternate interface is used for activating the CDC Ether-
net device: once the secondary alternate interface setting is selected, the
network is on-line and frames may be transmitted in both directions on
the BULK endpoints.

CDC has two distinct features that make it troublesome with some sil-
icon: it requires that the device USB controller IP-block or discrete com-
ponent support the Set Alt Interface command that is issued from the host
controller to select the runtime alternate interface,46 and it requires the ca-

45The CDC specification does not say anything about how MAC addresses are to be
assigned. It is of course important that no two devices will collide on a network, and in
our case the MAC address space for network consists of the host, the embedded system
and any addressable subcomponents in our embedded system. The host will typically
assume a MAC address at random, and the device and it’s subcomponents will assume
some different MAC addresses. It doesn’t really matter if some MAC address in the em-
bedded system collides with the address assumed by the host, because there are two
duplex directed pipes involved, not any “true broadcast ethernet” simplex, so only one
peer (behind a logically hidden direction of transfer) will respond to a message sent to a
certain MAC address in practice. If the device was to be an actual ethernet device con-
nected to an actual ethernet network, more caution is of course needed.

46For example the PXA2xx USB controllers from Intel and the USB controller built into
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pability of the BULK pipes to transport a zero-length packet. This last fea-
ture is necessary, because the 1500+ bytes of an Ethernet frame may need
to be transfered across the USB bus in several packages (a typical USB
package is in the order of 64 or 512 bytes) and the driver will detect end-
of-frame by detecting a packet that deviates from the full packet size. For
example: a frame of 514 bytes on a system with a USB maximum packet
size of 64 bytes47 will be divided into 8× 64 byte packages followed by one
2-byte package. The 2-byte package will be detected as less than the max-
imum frame size, and terminates the frame. If, however, the packet was
to be exactly 512 bytes, 8 × 64 bytes is sent, then a zero-length package is
sent to indicate that this is the end of the frame.

Some IP-core vendors and some discrete USB chips are, sadly, unable
to handle one or the other of these two prerequisites. Both features are
strictly speaking required for by the USB specification, but broken compo-
nents have been produced anyway, probably because almost nobody was
using these features at the time.

Implementing support for CDC is not totally straight-forward: the best
way to gather the experience needed is to intercept USB traffic from some
controller that has been known to work in practice.

7.2 RNDIS

The Remote Network Driver Interface Specification or RNDIS, is a scheme
supplied by Microsoft Inc. for developing network links over USB[17]. It
is an extension of NDIS, Microsofts Network Driver Interface Specifica-
tion, used for creating Windows-centric network drivers.48 The idea with
RNDIS is quite impressive: it is to encapsulate all possible remote (i.e. not
directly connected to the host computer bus) network devices in the fore-
seeable future. This includes not only network devices connected via USB,
but also any network devices attached using FireWire (IEEE 1394), Blue-
Tooth and InfiniBand. It is currently only defined for Ethernet II49 and
actually, it is only defined for USB. So RNDIS is currently (as of revision
1.1) a USB-Ethernet-only specification.

RNDIS has largely been the preferred solution among manufacturers of

certain SuperH chips from Hitachi and ST Microelectrics (often used with Windows CE)
do not support this command.

4764 bytes is the maximum packet size for “full speed” USB devices, whereas a “high
speed” devices will support up to 512 bytes in each packet.

48NDIS was created in cooperation with 3COM.
49Though Microsoft repeatedly confuse Ethernet II for “802.3” in their RNDIS docu-

ments.
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Figure 7: The RNDIS vision is simply illustrated in a Euler diagram like
this: RNDIS is supposed to be the general framework for writing network
drivers for network devices accessible on any future external computer bus.

USB network devices, since it is the only driver infrastructure supported
by the widespread Windows family of operating systems. A number of
cable modem (ADSL) manufacturers have however stayed with the CDC
model and supply their own Windows drivers for these.

While the vision seen in Figure 7 may appeal to some, this idea has
not generally caught on, at least not outside the world of Windows. It
is currently unclear if Microsoft will some day support CDC devices as
well, but as of now, such devices need to be supported using third party
software whereas RNDIS comes bundled with e.g. Microsoft Windows
XP. There is a driver development kit available from Microsoft that sup-
ports the host-side part of RNDIS, and a protocol specification that help
out when developing the device-side drivers for RNDIS.

It should be noted that a Windows machine will not automatically
detect and use an RNDIS device: an additional driver configuration file
(.inf-file) is always needed. This is because the Windows kernel require
these drivers to be associated with the precise idVendor and idProduct fields
of the device descriptor for a networking device. The actual host-side
driver is supported and developed by Microsoft however, though they
have dropped support for legacy systems like Windows 98 and Windows
ME which nevertheless have USB support and was available within the
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RNDIS framework in the past.
An RNDIS device identifies itself as having a CDC interface, but one

that uses a protocol that is vendor specific. It then lists itself as supporting
an Abstract Call Management (ACM) function, which can receive and de-
liver encapsulated queries and responses, much like a modem accepting
AT-commands.

The actual protocol used for RNDIS involves a rather complex Remote
Procedure Call (RPC) scheme built from some 50 encapsulated messages
that may be sent from the host controller to the device, and the result re-
trieved back to the host controller once the device signal that the message
has been processed. The last signal, “message processed” is sent over an
additional INTERRUPT IN endpoint, so that RNDIS will require one more
endpoint than a simple CDC device. These messages are most likely a
heritage from NDIS. The procedure for sending an RNDIS query and re-
trieveing the response is illustrated in Figure 8.

The encapsulated messages sent over endpoint 0 must subsequently
be parsed and handled. One out of 6 basic message types can be sent
and all of these must be supported, with the exception of REMOTE NDIS
INDICATE STATUS MSG, which is generated by the device and may just
as well never appear. All other messages go in the host→ device direction
and must be replied to in due time, or the network driver will conclude
that device is dysfunctional and disconnect it.

Most of the message parser handles the numerous REMOTE NDIS QUERY
MSG messages. Microsoft has listed a huge set of possible queries in their
protocol specification, and in practice even more — undocumented —
messages may appear. Most of these “mandatory” messages can however
be answered with nonsense and zeroes: for example RNDIS mandates that
a device shall be able to deliver transmission and receiveal statistics, and
the device may just as well reply “0” to all of them. A particular feature
of RNDIS is that the host controller can send a query named OID GEN
MEDIA CONNECT STATUS that reports if the cable was plugged into the
ethernet jack or not, in case this is an Ethernet controller. It may also re-
quest the network link speed and other things.

After sending an initial chunk of RNDIS commands, the driver will
enter an idle state and thereafter only repeatedly query the device for link
speed, media connection status and several packet transfer statistics. It
will also repeatedly send “keepalive” messages to check that the device
is actually there. In the meantime, packets may be transferred back and
forth on the two BULK endpoints, just like on a CDC device. The pack-
ets sent on the BULK endpoints are not simple Ethernet frames however:
they are prepended with RNDIS headers of 0x28 bytes which indicate the
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Figure 8: The RNDIS RPC protocol as it appears on the USB bus. The
RNDIS messages are sent back and forth in the data phase of the SETUP
command on endpoint 0, with the INTERRUPT IN endpoint as a moder-
ator: the device must first signal that the response is available on the IN-
TERRUPT endpoint before next RNDIS command can be sent. It should be
noted that in comparison with the USB CDC RNDIS is rather “talkative”.
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number of bytes in this RNDIS frame followed by some obscure words of
data containing pointers to extraneous out-of-band data50 and per-packet
information,51 but which may just as well be set to 0.

In difference from CDC devices, RNDIS devices put part of the host
controller responsibilities into the attached network controller. The most
clear distinction is that there exists a command for setting the MAC ad-
dress of the network controller, whereas in CDC this value is kept by the
operating system driver. Here, the virtual network is obviously believed
to begin within the remote network driver, and not within the operating
system.

7.3 RNDIS and CDC combined

Belcarra Technologies Corporation have for some time supported a com-
bination of RNDIS and CDC (and their custom CDC subset) for a module
of the Linux operating system, known as the Gadget API. The Gadget API
is a set of drivers for the Linux kernel which can be used when developing
different embedded systems based on Linux[3][13].52 Their source code
has also been merged into the mainline Linux kernel. They have further
developed a CDC driver for MacOS X and Mac OS 9, so that companies
that use the Linux Gadget API can supply drivers for all major operating
systems on the market, unless these already talk CDC or RNDIS natively.

The main trick involved in supporting both CDC and RNDIS at the
same time is to present two device descriptors: one (the first) for Mi-
crosofts RNDIS, and the second for CDC. The reason for why the RNDIS
descriptor must be presented first is that the Microsoft RNDIS driver will
just examine the first device descriptor to see if it is an RNDIS device,
whereas recent Linux kernels, for example, will examine any additional
descriptors.53

The different nature of CDC and RNDIS make them put different re-
quirements on the device USB controller.54 When using both CDC and

50This is a legacy from NDIS, the Network Driver Infrastructure. It is used for media-
specific information and priority tagging of packets.

51Microsoft says per-packet-information may be for example TCP checksums. (One
might wonder what the network driver shall do with those, it evades me.)

52Apart from networking using RNDIS and CDC, the Gadget API support such things
as USB file systems (USB Mass Storage).

53The Linux kernel will in fact make a qualified interface selection — Linux supports
both CDC and RNDIS so it will first search through the descriptors to see if there is a
CDC configuration to use, and in that case use the corresponding configuration. Else, it
will fall back on the RNDIS configuration and use that instead.

54Belcarra even notes that some controllers do not even support the requirements of
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RNDIS, the following is required from the hardware of the USB interface:

• Support for at least two different configurations. (CDC and RNDIS)

• Support for data following the SETUP command on both inbound
and outbound CONTROL endpoint 0 transfers. (RNDIS)

• Two BULK endpoints, one for inbound and one for outbound Ether-
net frames. (CDC and RNDIS)

• One inbound INTERRUPT IN endpoint. (RNDIS, otional for CDC)

• Support for the set alt interface-command on the CONTROL end-
point. (CDC)

• Support for zero-length transfers on the bulk endpoints. (CDC)

The following is required for the software part of the embedded system
supporting both CDC and RNDIS:

• Low-level control of the USB interface, including the possibility to
present several device configuration descriptors, interfaces and in-
terface settings.

• A low-level Ethernet frame grabber that communicate directly with
the endpoints.

• A low-level RNDIS parser that intercepts the messages sent to end-
point 0 and responds accordingly on the INTERRUPT IN + endpoint
0 RPC channel.

A print-out of the device descriptor used in practice, its configurations
and interfaces as they were developed for the prototype can be found in
appendix A. This dump has been included as a reference for implementers
wanting to create the same kind of functionality: one of the major obsta-
cles I found during implementation was the shortage of working device
samples. A simple dump like this one was extremely hard to get at.

any of them and goes on to define a CDC subset that will work with only two bulk
endpoints and no extras[3].
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7.4 Single-threaded Networking Using TCP/IP on Embed-
ded Systems

Network stack functionality such as TCP/IP, PPP, DHCP and even basic
Ethernet is commonly known in the embedded systems field under the
name middleware.55 It is so called because it is mostly conceptually placed
between the operating system and the higher-level applications for the
system. Several companies and open source projects produce such func-
tionality components for embedded systems, often in the form of software
libraries.

TCP/IP for embedded systems with small memories was for a long
time considered a “no can do”. That is to say, before Peter Eliasson and
Adam Dunkels created their TFE56 cartridge for the Commodore C64 home
computer. Adam Dunkels, working at SICS, the Swedish Institute of Com-
puter Science, wrote a minimal TCP/IP-stack to go with this card, and
such a stack would of course have to fit the memory footprint of a Com-
modore 64, i.e. significantly less than 64 kilobytes. The stack was named
uIP (“micro-IP”, µIP). It was fully compliant with the IETF RFC:s, would
fit in a few kilobytes of memory and could survive with just a few hun-
dred bytes of RAM[7]. He would also later write yet another small TCP/
IP-stack, named LWIP (“lightweight-IP”) from scratch. This stack was a bit
more general and extensible, and implemented a few optional features at
the cost of a few extra kilobytes of memory[8].

One might wonder what kind of fallacies made several engineers be-
lieve that small-footprint and RFC compliant TCP/IP was not possible.
The most obvious explanation may be that either they had seen the “small
implementations” made in web cameras and the like, which were actu-
ally quite ugly hacks and as such not RFC compliant, and compared this
to the code size of the BSD57 TCP/IP stack, which happened to be the
most widely available source code. Seeing that the fully functional, ele-
gant BSD stack was several hundred kilobytes or even a few megabytes
in size, whereas the small stacks were ugly and standards ignorant, may
have caused a few uninformed people to believe that the difference in size

55The very word “middleware” is ambigous and should preferably be avoided. In
the context of databases this word has a totally different meaning: it is taken to signify
software components between a database and an application.

56TFE is an acronym for The Final Ethernet, a word-play with some popular Dutch car-
tridges produced by RISKA H & P COMP. with names like The Final Cartridge or The Final
Chesscard produced primarily in the late 1980s.

57BSD is the Berkeley Software Distribution, a common POSIX-compliant UNIX-like
operating system.
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Stack x86 platform AVR platform
uIP 5188 5164
LWIP 14588 21756

Figure 9: Code size of the uIP and LWIP stacks in bytes. As can be seen,
even the rather advanced LWIP stack does not even exceed 32 KB[7].

would equate the difference in quality, thus yielding the false assumption
that you had to have a stack of a few hundred kilobytes to achieve decent
TCP/IP functionality. I do not know if this explanation is true, but the
assumption about TCP/IP stack size is very real, and kept several imple-
menters of embedded systems from embedding TCP/IP into firmware.

Dunkels illustrates how a small-footprint TCP/IP stack is perfectly fea-
sible in his published papers[7][8]. The hard facts showing the memory
consumption for the stacks can be found in Figure 9.

When adding TCP/IP to embedded systems in general, and firmware
loaders in particular, a number of important points arise:

• Embedded systems do not generally need the quite large and com-
plex BSD socket API. Some embedded OS:es aiming for POSIX com-
pliance may want to implement this API, but simple applications like
firmware loaders do not need it.

• Execution in several embedded systems, and in almost all firmware
loaders, is single-threaded. Such esoteric features as context-switching
(and associated copying of entire TCP buffers) and semaphores for
limited hardware resources is not needed.

The uIP and LWIP stacks make up for this. Execution is possible to keep
within a single thread, accessing the hardware on its own.

The execution of the uIP and LWIP stacks is driven by events. Such an
event is typically that an Ethernet frame arrives at the interface, or that
a timer has triggered an interrupt. When an Ethernet frame arrives, it is
checked to see if it is a valid IP packet and if this is the case, triggers a
number of callback functions that will decode the packet and deliver it
to applications that have registered as listeners. As TCP/IP need to drop
packets or connections that time out, an additional timer interrupt is also
needed. A second possibility is to have a hardware-driven mechanism for
stacking up frames that arrive in a buffer, and have the buffer periodically
polled by a timer interrupt. By using this simple interrupt-driven mecha-
nism, the overhead incurred by using a full operating system and its task
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scheduler is removed, and the TCP/IP stack becomes both very small and
very fast.

LWIP differs from uIP in that it has slightly more features: unlike uIP it
also supports UDP, multiple network interfaces, sliding window (sending
several TCP fragments at the same time, so as to account for transmis-
sion delays and loss in the network), congestion control, out-of-sequence
data and buffering for retransmissions.58 Since its initial implementation,
a rudimentary BSD socket API has also been added to LWIP, but this part is
optional and need not be compiled in. The LWIP project has also started a
life of its own apart from its author, and lives as an open source project[14].

The licensing terms for both stacks is the so-called BSD license, which
means that the stacks can be used in proprietary software, and that modi-
fications to the stack need not be shared with the wider community.59

7.5 TCP/IP Configuration

When a device has working IP networking, the question arise of how this
device shall behave in order to become a true network citizen configured
with an IP-address, a network mask and a gateway.60 Strictly speaking,
in some contexts an IP-address is all that is needed, but whenever a de-
vice shall be internetworked — share information with other hosts on the
Internet — it will need a netmask and a default gateway as well. There
are often even more things to network configuration: name resolution in
accordance with RFC 1034 and 1035 may also require the IP-address of a
DNS (Domain Name System) server.

So how are the configuration parameters assigned to the embedded
system network? A possibility is of course to “hardcode” the IP-address
and other parameters as constants in the device firmware, or make them
configurable through the embedded systems user interface if there is one.
Mostly, however, such things are perceived as obscure, and it is easier for
an end-user if configuration is accounted for with some automatic config-
uration protocol. This Section will deal with a few such protocols.

58Buffering for retransmissions means that packets are kept in a buffer in case they’d
be lost on the network, so that they can be retransmitted if not acknowledged within a
certain amount of time. The uIP stack solves retransmissions by requiring the application
to be able to re-generate a piece of TCP data if need be.

59It is however a good idea to contribute and share modifications to the LWIP stack
with the other developers: the project is advancing at high speed, and keeping a forked
version of LWIP could prove very exhaustive, if changes made in the mainline stack are
to be continually merged back to the forked codebase.

60The reader is assumed to be familiar with the concepts of network masks and gate-
ways for IP networking, as mentioned earlier.
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Figure 10: This Figure shows the basic outline of the DHCP protocol, as it is
used when a client obtains an IP configuration from a server. More DHCP
messages exist, but these are the most important.

7.5.1 DHCP

DHCP, the Dynamic Host Configuration Protocol, is defined in RFC 2131
as an extension of the earlier Bootstrap Protocol (BOOTP) from RFC 951.61

DHCP is backwards compatible with BOOTP, so a client that only under-
stand BOOTP may obtain an IP configuration from a DHCP server.

DHCP uses the UDP protocol and broadcast addresses. This is neces-
sary, since we cannot address something that we don’t know either hard-
ware MAC address or IP-address for on the local network, so broadcasting
is the only possibility. Further, two UDP ports are dedicated for this traffic:
number 68 on the client side and number 67 on the server side.

The format of the UDP packets is basically that of BOOTP packets, ap-
pended with several options. The only part of the original BOOTP packet
that is really used is the IP-address field and the hardware address field.
The rest of the BOOTP structure is filled with zeroes (unless a BOOTP
client was requesting the configuration of course). As BOOTP implemen-
tations are to ignore options it does not recognize, the entire DHCP su-
perset mechanism has been implemented by way of such options, thus ef-
fectively achieveing backwards compatibility. A detailed list of available
options can be found in RFC 1533. Except for the most rudimentary ones
such as network mask and default gateway, there exist options for config-
uring DNS servers and even NTP servers for use with a certain client. A
client must specify which options it is interested in, and must accept the
fact that it is not mandatory that all configuration options that it wish for
will be returned. For example the DHCP server may return a subnet mask,
a gateway and a DNS, but no NTP server or NetBIOS over TCP/IP server.

61A newer version of DHCP which has been amended for use with IPv6 also exists as
RFC 3315.
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The basic DHCP operation can be seen in Figure 10: a newly attached
client will locate a DHCP server using a DHCP DISCOVER message, and
the server then offers a configuration using a DHCP OFFER message. This
does not mean the configuration can be used: the DHCP server can offer
the same configuration to several clients over time, if nothing is heard from
the first machine. To confirm that the client really wants this address, it
has to issue a DHCP REQUEST message,62 and if the server still has this
configuration available it will respond with a DHCP ACK message. After
the ACK, the client may start to use it’s new address. It is also possible
that it issues a DHCP NACK message, denying the use of the requested
address. The client will then have to iterate through the whole cycle again.

When the configured host is taken offline and subsequently reconnected
to the network link, it will most often remember the last recently used
DHCP server, and simply send a DHCP REQUEST to it immedately, re-
questing the re-use of the previously used address.

IP configurations are offered for a limited time span only, typically 7
days. After half this time, a client will usually send a new DHCP RE-
QUEST in order to renew the configuration lease.

7.5.2 Zeroconf (Rendezvous)

The Zeroconf protocol, currently in an Internet Draft state (i.e. not pub-
lished as an RFC) is already widely deployed in products developed by
and for Apple Computers Mac OS X. Apple previously used the brand
name Apple Rendezvous (french for “meeting”) for this technology, which is
inspired by their AppleTalk protocol. Zeroconf was developed for certain
situations where AppleTalk would be able to auto-configure the network,
whereas Internet protocols would not.

The typical use case for Zeroconf involves bridging two hosts with a
cross-over ethernet cable. If the network interfaces of these two hosts
are configured to use the TCP/IP protocol suite, typically nothing will
happen, and neither host will be able to communicate with the other, be-
cause IP-address, network mask and gateway have not been configured.
As none of the hosts can be assumed to be a DHCP or BOOTP server, there
is no third party to ask for a configuration.

Zeroconf solves this problem. The algorithm used is basically the fol-
lowing:

• Provided that the network interface has not been assigned configu-
ration parameters through DHCP or similar protocols;

62using unicast since it now knows the IP-address of the DHCP server

39



• Randomly select an IP-address between 169.254.1.0 and 169.254.254.
255 in the 169.254.0.0/16 address space. The selection shall be done
using an evenly-distributed random number generator. If a number
has previously been used, it should be saved and tried first, before
generating any new random IP-addresses.

• The address should then be claimed on the local network by the net-
work interface before use, so that the address space is not corrupted.
This is done by issuing a broadcast ARP63 request for the desired IP-
address. The device will fill in the sender hardware address of the ARP
request, but set the sender IP address to all zeroes. This special ARP
request packet is called an “ARP probe”.

• The device issues a fixed number of such probe packets, randomly
distributed over time.

• The device then waits a fixed time interval to see if there appears
any ARP packets whatsoever, bearing the randomly generated IP-
address, including both ARP request and response packets. It also
checks to see if there are other ARP probe packets trying to probe
the same address. If any such packet it found on the network, the
address is regarded as occupied, and the process must be restarted
by selecting a new random address and probing it.

• If no other peer on the network responds to the ARP probe, and if no
other device is detected probing the network for the same address
within a certain time interval, the device assumes a successful claim
and takes the identity of the new IP-address.

• The device will then announce its new IP-address by transmitting
a number of ARP probe packages with both the sender and target
addresses set to the newly obtained address. This flushes any ARP
caches present in other peers on the network.

• The IP-address is then continually defended: if ARP packets appear
bearing the same IP-address as the device, but a different hardware
address, the device shall either give in and try to assume a new IP-
address or broadcast blocking ARP packets, responding to the ARP
request and thus claiming the address.

In order to keep the defences up on the network, all ARP requests and
responses must use broadcast: no peer may ignore any ARP packets.

63ARP is the Address Resolution Protocol, see RFC 826.
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In order to use the network, you however need an IP-address to ac-
cess your device. Unless these are statically assigned, or predictable (as
with DHCP) you need some kind of naming service to be able to resolve
a symbolic name on the local network into an IP-address. For this reason,
the Zeroconf working group has drafted a multicast-based DNS mecha-
nism which can be employed to use symbolic names on the local network.
Another possibility is of course to use some custom broadcasting protocol.

7.5.3 What Address Should Be Used?

A practical consideration that will surface is of course what IP-addresses
to choose for an embedded system connected to a host. The host and the
device will share a small, private network, and as far as the host is not con-
nected to the Internet any address can be chosen. If the host is connected
to the Internet, there will exist at least one other network interface on the
host computer and the system will have to have a routing table to decide
for each packet which network interface shall dispatch it. If the network
IP-addresses are the same for the two interfaces, confusion arises, and the
packet will most likely be sent to the interface which was configured first
and which therefore appears first in the routing table. This situation must
be avoided at all costs, as it will in practice cause either network to “dis-
appear” from the host.

RFC 3330 lists a number of special-use IP-addresses which can be con-
sulted for deciding on which address to use in situations like these. Three
of the address series listed therein are the networks 10.0.0.0/8,64 172.16.0.
0/12 and 192.168.0.0/16 which are set aside for private Internets according
to RFC 1918. These cannot be used, because we don’t know if our embed-
ded system is connected to a private Internet. It is a common practice for
e.g. broadband routers and firewalls to define an internal network in one
of these ranges and assign addresses on this network to hosts connected
to the routes.

We could subclass the 127.0.0.0/8 network defined in RFC 1700 as inter-
nal host loopback address. It is common practice to use 127.0.0.0.1/31 for the
local host, but the entire range 127.0.0.0/8 is actually reserved and mostly
unused. However it is a matter of interpretation as to what internal host
may mean. Does it mean that we could consider a device attached to the
host using a USB cable as internal? The least dangerous interpretation is
that we should not do this, because we do not know how operating system

64This notation reads: <network address>/<number of one-set bits from left of the
subnet mask>, 10.0.0.0 with subnet mask 255.0.0.0 has the same meaning.
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implementers may have interpreted it.
Instead, we decide to use the network 169.254.0.0/16. This network is

defined in RFC 3330 as link local, and is said to be intended for commu-
nication between hosts on a single link. This range is specified to be used
whenever we need to communicate between hosts by auto-configuration.

What is meant by “auto-configuration” is not clearly stated in this RFC,
but taking into account that the IETF Working Group for Zeroconf (see
previous Section) assigns addresses within this range gives at hand that
this range has thus been cleverly reserved for Zeroconf before the actual
RFC:s had been published. The drafts from the Zeroconf working group
further define that a set of IP-enabled hosts are considered link-local if:65

• When any host A from that set sends a packet to any other host B
in that set, using unicast, multicast or broadcast, the entire link-layer
packet payload arrives unmodified, and

• A broadcast sent over that link by any host from that set of hosts can
be received by every other host in that set.

Both requirements are fulfilled by the kind of network we have illus-
trated in Figure 3 and also match the solution implemented in the proto-
type.

If our device supports both Zeroconf and DHCP, we can run the fol-
lowing algorithm once the network interface is activated:

• The primary processor of the embedded system (there may be only
one, typically the one dealing with the host connection) is dedicated
as a DHCP server. It will first wait for a while and see if a DHCP
discover/request message appears from the host. If that happens, it
serves a static address in the 169.254.0.0/16 range and assign other
addresses in that range to the subcomponents of the embedded sys-
tem.

• The subcomponents of the embedded system may ask for their con-
figuration using DHCP as well, as far as they wait for the host to
be assigned first. They may detect that DHCP is in use by listening
to see if messages are sent from the DHCP server. When they de-
tect DHCP traffic, they can start requesting configurations for them-
selves.

65As Internet Drafts are not to be cited (see RFC 2026 Section 2.2), no source can be
given for this definition until it’s publicized.
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• If no DHCP request from the host appears within a certain amount
of time, the primary processor should go to Zeroconf mode and try
to allocate an IP-address for the device in 169.254.0.0/16 using the
Zeroconf algorithm.

• Addresses should be allocated for all subcomponents of the system
independently, so when the subcomponents time out waiting for
DHCP traffic or otherwise detect Zeroconf traffic on the network,
they start employing the Zeroconf algorithm independently.

Since we have full control of the network end-to-end, we may use the
same address range that has been reserved for Zeroconf when DHCP is
used for address assignment: no unknown peers can possibly appear on
this link and start behaving differently. If desired, there is also a document
draft from the Zeroconf working group addressing IPv4 address conflict de-
tection which may enable simultaneous use of DHCP and Zeroconf on the
same network and same address range, making it possible for the two
methods to interoperate without any special considerations.

On a side note, a third, less viable alternative for automatic configura-
tion is said to be the NetBIOS protocol, originally developed by IBM and
Sytec, but nowadays mostly known for its use in Microsoft Windows en-
vironments. It has been blessed as an Internet Standard in RFC 1001 and
RFC 1002. However, this protocol (which was initially a link-level protocol
as well) has merely been encapsulated in Internet Protocols for supporting
the large amount of software that was tailored for NetBIOS in the 1980s,
and has not been developed further since. I have not made any deeper in-
vestigations into the nature of NetBIOS configurations and name services.

8 Security Concerns

Andrew Huang who has written a practically-oriented and hands-on man-
ual of embedded systems security named Hacking the Xbox[11] character-
izes the core issue of embedded computing as keeping control of the instruc-
tion pointer. This is a simplification of course: embedded systems may ex-
hibit a number of security hazards, from being dangerous by documenting
too much, like a web camera placed in a bad spot, or by just building up a
momentum of mental stress for the user.

Putting more high-level security concerns aside, and going for the main
issue concerning firmware loading, we are back at the program counter.
What is generally understood by the term trusted computing is that the pro-
gram counter of the CPU will only point to trusted code, i.e. code that a
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manufacturer or user of a system has approved to be run on the system.
This is to be distinguished from malicious code, which is code that the user
does not want to execute on his or her system, such as a computer virus.
The core security components of a system is often called its trusted comput-
ing base (TCB).

Whereas it is theoretically possible to have the CPU verify a signature
for each machine-level instruction before running it, this is very hard to
do in practice. The most common practice in embedded systems found in
the wild is to verify an entire block of software before running it. A typical
method is to checksum a block of code, such as an entire firmware, with
something like an SHA-1 one-way hash,66 and then encrypt this check-
sum with a symmetric or asymmetric cipher key and append it to the code
block.67 We call this a signature. By decrypting this block signature, recal-
culating the checksum and comparing the two, a certain software block
can be verified against a certain key before executing any code. If the ver-
ification fails, the code is not executed.

Some systems, like the Microsoft Xbox, use a symmetric cipher for en-
crypting the signature checksum. This has the downside that the secret
cipher key has to be stored somewhere inside the embedded system, and
an experienced reverse-engineer is likely to be able to pry it out. Other
systems like the Creative Nomad Jukebox from Creative Labs use an as-
symetric cipher, meaning that the embedded system will only contain a
public key used to verify the signature, whereas the software has been
signed with a private key. The latter solution should be preferred, as it
is considerably more robust and can also be extended to use public key
certificates if need be.

While the idea of signatures is in theory a perfect platform for secure
execution of software, all interfaces to the system provides exploitable se-
curity holes. These holes always exist, but aren’t necessarily easy to find
and exploit. We will examine in some detail the holes that may exist in the
firmware loader.

The whole issue really boils down to the old problem of keeping track
of the program counter: what may distract the program counter away
from authorized code?

66SHA-1 (an acronym for Secure Hash Algorithm) maps a binary sequence onto a 160-
bit digest that should be unique enough to disable so called preimage attacks, i.e. con-
structing ad hoc attachment sequences which can make an arbitrary sequence match the
digest.

67The reader is assumed to be familiar with concepts such as encryption, symmet-
ric/asymmetric keys, public key certificates and similar things. If these things seem alien,
please consult a textbook such as Computer Security by Gollmann[10].
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If we look into the firmware loader using DFU as described in Section 6,
or the networked alternative that was outlined in Section 7 we notice two
things:

First: there is nothing that prevents the firmware file transfered over
DFU or in the application layer of the network from containing an addi-
tional digital signature. Thus both solutions are compatible with trusted
computing schemes.

Second: the lower levels of both concepts may be subject to quite sim-
ple buffer-overrun attacks. This goes for the USB low-level stack used by
the system using either the DFU or a network, the DFU protocol imple-
mentation in the system (if that is used), or the rest of the network stack
between the application and USB signals in Figure 4 on page 25.

Exploiting a buffer-overrun means that you locate a spot in the gener-
ated machine code of a program (device driver, protocol stack etc.) where
an array variable storing incoming data can be indexed out of its mem-
ory domain. Doing so, you can potentially send in a custom data stream
that will overwrite the data memory and reach the activation record68 cur-
rently in use by the routine filling the buffer. There, it may overwrite the
return address for the routine, effectively distracting the program counter
to execute some arbitrary code that has been injected along with this mali-
cious data. In this way all of the security measures introduced by signing
the software is obliterated and the program counter is hijacked[6]. (Apart
from corrupting the return address, other buffer-overrun attacks are pos-
sible.)

Of course you will need some additional knowledge of the hardware
in order to truly exploit and take control of a system in this way, a task that
typically will exceed the security breach process in time.

The only way to plug such security holes (as they are called) is to au-
dit the code of the stack, over and over again. Not only will this remove
a lot of exploitable code, but generally increase code quality and read-
ability as well. Such attacks are easier to perform when programs use
non-typesafe languages like C, so switching programming language is an
option, however not always so easy to perform, since many embedded
systems only have compilers for the C programming language. A few
programmatic countermeasures are available,69 however these often incur
performance and/or memory utilization hits. Countermeasures that de-
pend on features in the operating system are of course out of the question,

68Activation records are a concept of compiler technology. The reader is encouraged to
consult a textbook on compilers if this concept is not understood.

69See Cowan et al[6].
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as a firmware loader usually doesn’t make use of the operating system.
The USB part of the stack includes the low-level drivers for the sili-

con used for handling transactions to/from endpoints on the device. By
injecting special packets using specialized hardware or software a skilled
intruder may for example send packets that exceed the maximum packet
size for an endpoint, or add malicious code to the data phase following the
SETUP command on the USB bus, as this will be interpreted by the USB
driver. The BULK and INTERRUPT endpoints are not equally vulnerable:
the data that arrive on these endpoints is usually passed on uninterpreted
and unmodified to the next layer. In our case, data is only transported out
of the device on the INTERRUPT endpoint when used for RNDIS, and it
is thus not likely to be subject to an attack.

The LWIP stack presented in Section 7.4 presents a special dilemma:
the code used in LWIP is open source, i.e. easily available off the Internet.
One school of thinking (the minority) says this is a bad thing, stating that
keeping source code secret hinders security exploits. The other school of
thinking (the majority) calls this “security by obscurity” and notes that as
buffer overruns are exploited by reading machine language and using dis-
assemblers to find weaknesses in implementations, access to source code
is not important to exploit buffer overruns: instead the characteristics of
e.g. the compiler used and the host CPU are more important[18].70

Using LWIP in a project should typically involve feeding any patches
for security vulnerabilities back to the project, so as to create a very good
and secure TCP/IP stack. Not only do others get to use your fixes: you
will also raise interest in these issues and get fixes and feedback from other
developers with different interests.

When some data has passed through the link and network layers, the
applications using it must of course be equally security-aware and watch
out for exploitable buffer overruns.

9 Implementation

This Section will present what I implemented in my prototype and how I
went about doing it.

When I started my work on the embedded system, I first examined
the hardware and software development environments used for this par-

70While I cite Stajano & Isozaki here, the notion about intruders using disassemblers
is my own. In my opinion, Stajano & Isozaki show a lack of understanding as to how
security vulnerabilities in code are actually exploited, by giving (limited) support to the
notion that availability of source code simplifies attacks.
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Figure 11: These screenshots show ping and chargen running on Linux with
the embedded system attached as a CDC device, with complete networking
over USB. Ping was run successfully for the first time on 2004-07-09 at 12:57
and chargen was run on 2004-07-14.

ticular system. All larger companies have their own, slightly idiomatic
software configuration management systems and change management /
bug tracker / task dispatch systems and Ericsson Mobile Platforms is no
exception. However, being an employee since many years, this was not
much of a problem and I quickly became familiar with the development
tools.

All code was implemented in the C programming language for the
ARM 9E processor core. The programs were compiled using custom tools
and transfered to the target using proprietary firmware loading mecha-
nisms. Once started from within this framework, my own firmware load-
ers could start a life of their own.
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9.1 USB What, Where and Why

The USB hardware was a well-documented IP-block that had been incor-
porated into one of the ASICs of the system, and was available through
memory-mapped I/O-registers. The hardware could generate interrupts,
and was supposed to also facilitate double-buffering and DMA71 transfers
of buffer contents; however this feature was seriously limited (slower than
manual copying) and could not be used. The IP-block also had a double-
buffering mechanism, so that incoming data (USB OUT transfers) could be
retrieved from one buffer while the second was still being received. This
feature was totally broken and could not be used at all.72

The USB IP-block could support fifteen inbound and outbound end-
points, apart from endpoint 0 (which had separate hardware registers and
could be used without concern about what was going on on the other end-
points).

A software driver written in the C programming language was avail-
able for the USB IP-block. (This driver will be referred to as the function
driver to distinguish it from the host side driver, which is implemented on
the host PC side.) However this function driver would only support end-
point 0 control transfers and two BULK endpoints: one inbound and one
outbound. This is typical for most function drivers that only want to use
USB as a convenient data transfer channel, much the same way as RS232
interfaces were used in the past.

The hardware would only allow for one inbound and one outbound
transfer to commence at the same time, as there was only one buffer for
each type. (Apart from the transfer buffers for endpoint 0, which were
independent of the other endpoints.) As I was only using one outbound
endpoint apart from endpoint 0 in CDC+RNDIS, outbound transfers were
no problem. However when using RNDIS, both one inbound BULK and
one inbound INTERRUPT endpoint needed to be accessible at the same
time. When using several inbound endpoints at the same time like this, a
queueing mechanism should be devised, but in this case, as I was only us-
ing a single resource for two tasks, a simple buffer and semaphore-system
was easier to implement. If either the BULK or INTERRUPT transaction
detected that a transfer of the other type was commencing, it would sim-
ply buffer its packet and wait for the resource (i.e. the inbound endpoint)
to become available.

71DMA is Direct Memory Access, and describes the feature of a computer system where a
hardware unit may independently access the main memory without routing information
through the CPU.

72A later revision of the IP-block fixes both these problems.
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I also discovered that the function driver was not tested with regard
to incoming data after the SETUP phase on endpoint 0, so code for han-
dling this properly had to be written. Outgoing data on endpoint 0 is used
for transfering all device descriptors and such things, so this was already
implemented and usable.

9.2 USB CDC+RNDIS Networking

The network low-level function drivers were implemented as a two-stage
rocket: first a CDC device was created, as this was the easiest part. Device,
configuration and interface descriptors for a CDC Ethernet controller was
presented to a host computer running Linux. Once the Linux CDC host
driver started talking to this controller, interception of the USB traffic re-
vealed missed details and helped out in speeding up the implementation
procedure. USB traffic was captured and analyzed using a USB Tracker, a
combined hardware/software USB sniffing tool developed by Ellisys.73

For generating some Ethernet frames on the USB bus without any work-
ing TCP/IP stack, the program in appendix B was used. This program use
the low-level Linux network interface to generate an arbitrary packet on
the ethernet interface associated with the CDC device. The function driver
on the device side could respond by just copying the ethernet frame and
sending it back the same way. This was how the rudimentary CDC im-
plementation was bootstrapped (created from no working code base) and
tested.74

Once the CDC Ethernet function driver was fully working, the LWIP
TCP/IP stack was introduced into the source tree, adapted and debugged.
LWIP was chosen over uIP for its support of UDP75 and general extensi-
bility, so as not to restrict future developments of more complex network
functionality, for example LWIP has basic IPv6 support76 under way, and
this might be desirable in the future.

To debug the TCP/IP stack, some more intelligent packet analyzer than
the Ellisys USB Tracker was needed, so for this I installed the sniffer pro-
gram Ethereal,77 which is perfect for analyzing high-level internet proto-

73See http://www.ellisys.com/ tools like this can be quite expensive, the Ellisys
tool cost around 10.000 SKR and is considered cheap.

74I have since been notified of such network tools as hping (http://www.hping.
org/ ) whose only use is to create custom frames for different protocols, so the reader
may want to examine a few other possible tools.

75UDP is the User Datagram Protocol, see RFC 768.
76IPv6 is the successor to the currently dominating, but limited IP version 4 protocol.
77See http://www.ethereal.com/
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Figure 12: Once the RNDIS RPC protocol is implemented and responds as
the Windows driver expect, the embedded system appears as a “network
card” in Windows. The “Network and Dial-up Connections” control panel
will also display an icon with the name “Local Area Connection 2” (if you
previously had one) which gives you the opportunity to configure the net-
work card with IP-address, netmask and gateway. (The first successful test
was done 2004-09-13)

cols over Ethernet, and which is available for both Linux and Microsoft
Windows.

A network interface module for LWIP utilizing the CDC USB Ethernet
interface was written from scratch with structure based off the templates
found in the LWIP ports tree (which is actually a bunch of examples of how
to get LWIP up an running on different architectures, network interfaces
and compilers). The USB CDC driver was very close to that of a common
Ethernet driver. This network network interface was then integrated with
the LWIP stack so that the entire stack as illustrated in Figure 4 on page 25
was up and running, see Figure 11.

The stack on the device was hardcoded to use IP-address 10.1.1.2, net-
mask 255.255.255.0 and gateway 10.1.1.1, whereas the host stack needed
manual configuration by running this Linux command as root user:

# ifconfig eth1 10.1.1.1 netmask 255.255.255.0 up

These operations involved a lot of fixes here and there but was essen-
tially a straight-forward task, much thanks to the very well written, well
structured and easily portable code in LWIP. The support for UDP pack-
ages, IPv6 and BSD sockets was excluded (instead of sockets the so-called
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“raw API” using raw packets and callbacks as discussed in Section 7.4 on
page 35 was used), but could be reintroduced if need be.

A few simple sample applications for TCP/IP in the framework of an
Internet Daemon (inetd) were written for testing, for example chargen, a
daemon that will respond by a repetitive stream of characters when a user
TELNET:s78 to port 19 of the system.

When the complete network stack was functional if attached to a Linux
host, so far that ping (i.e. ICMP) and chargen (i.e. TCP) were fully func-
tional, Microsoft RNDIS support was introduced. This involved writing a
large RNDIS message parser and doing excessive bus monitoring. Here,
a nasty problem with stack overflow in the IRQ stack appeared: if too
many nested function calls were made (as in the RNDIS message parser)
the stack would overflow and start corrupting main memory.79 This error
was finally resolved using a hardware debugging tool named Trace 32 from
Lauterbach Datentechnik GmbH. After the stack depth was increased by
five times, no more sporadic errors would appear and the RNDIS function
driver exhibited a stable behaviour.

As the host operating systems were both using standard drivers to
communicate with the system, no real programming had to be done on
the host side. CDC works out-of-the-box with Linux, but RNDIS require
you to supply a driver disk with all devices. In practice this is just an .inf-
file which registers your idVendor and idProduct with Windows, plus two
kernel driver files, both of which are supplied by Microsoft. On Windows
XP (and presumably newer Windows systems as well) only the .inf-file
was needed, as the drivers are included with the operating system.

I do not know why Windows does not autodetect and prime RNDIS
drivers (as it does with, for example USB mass storage devices), but it
presumably has to do with the fact that as RNDIS is just partly a stan-
dard device class, it is considered custom and as such should load custom
drivers.

Microsoft have updated their RNDIS driver kits, and only support
RNDIS under Windows 2000 and Windows XP nowadays, but using a
combination of the present and an older kit, you can create RNDIS driver
disks that also support Windows 95 SE, Windows 98 and Windows ME.
(This was also done.) Apart from Windows 2000 it cannot be said to have
been tested though, as my managed workplace would not allow me to

78TELNET is a standard protocol, but also a terminal-like program that opens a char-
acter stream console to a remote host on a TCP/IP network. Another program that has
the same effect is GNU netcat.

79Notice that stack overflow is also a security hazard, albeit probably quite hard for an
attacker to exploit.

51



Figure 13: These screenshots show ping and chargen (first successful test
2004-09-15) running on Microsoft Windows 2000 using RNDIS and the LWIP
network stack.

install and test any other operating systems than Windows 2000.
When a proper RNDIS driver was in place and the device was respond-

ing correctly to all RNDIS messages, the device would appear as a network
card, as can be seen in Figure 12. The ping command and the sample char-
gen daemon would then respond to requests in the same way as for CDC
as can be seen in Figure 13, and the entire CDC+RNDIS network stack was
thus implemented.

Close to the project end, a version 1.0.0 of LWIP was released. This was
quite quickly integrated back into the codebase which had thereto been
running the old 0.7.2 version.

9.3 Automatic Configuration

To support automatic configuration of the host computer I developed a
lightweight DHCP server running on the embedded system. To under-
stand the packet format and examine some traffic in real life I simply ran
the Ehtereal packet sniffer in promiscuous mode on my home network,
filtering out and saving DHCP traffic only while making a few DHCP re-
quests against a server. I also obtained a log file from a large network,
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where DHCP had been running for some time, so I could observe how
traffic would look in a large-scale deployment.

As DHCP uses UDP, the UDP support had to be turned on in the LWIP
stack. This was no big operation, and the extra UDP code would only
account for an additional 1.3 KB of the total LWIP code size.

When debugging the DHCP server, Ethereal was once again the per-
fect tool, when used together with the Linux CDC interface. Any broken
DHCP packets were easily identified and the code could be finalized in
just two days.

The very simplified DHCP server was not BOOTP compatible, and
would assign the IP-address 169.254.1.1 and the network mask 255.255.
255.0 to the first host connecting to the system. As there could be only one
host system on a CDC+RNDIS connection, ever assigning the requesting
host IP-address 169.254.1.1 was no problem. The device itself would as-
sume the IP-address 169.254.1.2.

Network operations could then be performed from the host against
IP-address 169.254.1.2 whenever the device was plugged in. No DNS en-
tries were configured, as I did not implement a lightweight DNS server on
the device, but this could optionally be done as a part of a larger project,
so that e.g. ping foo would contact the device without any need for IP-
addresses. (This may however raise conflicts with other DNS services that
need to be resolved.)

9.4 Applications

Apart from the test daemons, a firmware loading daemon was imple-
mented. This firmware loading daemon uses TCP and a custom proto-
col and a custom client for talking to the daemon from the host computer
performing a firmware upgrade, configuration or diagnostic.

As the system used has a quite large and diversified proprietary firmware
loader, all functionality could not be easily ported without forking the de-
velopment source code trees, so a one-shot test (scrap) daemon was pro-
grammed to be thrown away as a proof of concept. This daemon could
dump out regions of memory for diagnostics and reformat and program
flash memory on the embedded system.

With this service daemon finished, the entire networked firmware loader
concept was finally demonstrated and shown to work. Further studies
that could have been performed are speed benchmarking for transfers, se-
curity auditing and the like, but because of time limitations, such measures
will have to be put into future projects based on this first prototype.
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Figure 14: A web interface for firmware modification

As a last step, a Firmware daemon in the form of a HTTP server was
implemented. This had the immediate advantage of providing a sim-
ple Web-based user interface for firmware upgrade, maintenance, trou-
bleshooting and modification, using nothing but standard protocols and
description languages. A screen capture of the prototype web interface
can be found in Figure 14.

9.5 Obtained Code Sizes

The code sizes obtained can be found in Figure 15. These code sizes are
for an ARM processor in thumb mode. The difference between thumb and
normal mode is basically that the instruction words are 16-bit instead of
32-bit in thumb mode, while some more complex instructions are unavail-
able. Using the thumb mode nominally results in less memory consump-
tion for code, but there may be situations where several thumb instructions
are needed to produce the same code that can be obtained by a single nor-
mal instruction. The compiler used is the IAR C/EC++ Compiler with the
-Z9 optimization switch (minimum size).

We see that the total footprint of the code is about 42210
1024

≈ 41.2KB, in-
cluding a few demonstration programs. The RAM usage is dependant on
how large TCP buffers you define, in this case the embedded system has
several megabytes of RAM available so a large buffer of 128 KB was used.
Apart from these 128 KB the LWIP stack would use circa 40 KB additional
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Component Code size Constant size Total size
USB stack 6574 1803 8557
LWIP TCP/IP stack 18616 107 18723
Basic Internet daemons 3414 1649 5063
System overhead 9000 1047 10047
Total 37604 4606 42210

Figure 15: The code sizes in bytes obtained for different parts of the proto-
type using the IAR C/EC++ Compiler. “System overhead” includes boot-
strap code (processor initialization and similar) and a portion of the stan-
dard C library. Compare the TCP/IP stack size to the size of the uIP and
LWIP stacks in Figure 9.

RAM for internal variables.

10 Conclusions

Concluding this thesis means stating if there was enough substance be-
hind the concept of firmware loading using standardized protocols to go
through the pains of doing a thesis on the subject.

I believe that there was. The text shows that there exists a number of
protocols that can be used as a mixture for transfering firmware to a target
system. We have seen that a viable alternative is to build a small net-
work beteen a host system and an embedded system in order to transfer
a firmware file and carry out any other things related to firmware loading
on a level above electronics and tailormade protocols.

Through prototyping, I have showed that this can be done in practice,
and even though the prototype only includes a single-processor system
and a host system to manage it, the code sizes obtained show that this con-
cept can both be deployed in hardware ROM code and in the future could
also be deployed in a multi-core system, where each unit is autonomous
and retrieves its firmware files and presents additional low-level interfaces
over the network.

The ideas and implementation also illustrates the way to go with ever-
increasing system complexity and unpredictable behaviours creeping up
in designs. The robustness of networks will indeed be needed to keep
large systems running during normal operations, and also adding a net-
work of some sort to the very rudimentary single-threaded firmware up-
grading process seems inevitable.
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There are a number of security concerns with these solutions, most of
which can be solved or taken as a given risk depending on the level of
security required by the system in question.

The question remains if this thesis has made the world a better place
to live in, generally speaking. I believe it actually does, because the ever-
increasing plethora of different ad hoc solutions and protocols make up for
a good part of the stress experienced by engineers in this field. Putting
some standard in its place is always a good thing, as the acceptance of
the TCP/IP suite has showed in the network world. Learning network
administration today is a matter of understanding TCP/IP. It used to be
a matter of understanding not only TCP/IP, but also SPX/IPX, NetBIOS/
NetBEUI, the AppleTalk stack plus theorizing about numerous ITU-T X.
nn-standards. The introduction of the USB bus has had a similar focusing
effect in the area of peripheral connections.
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A CDC+RNDIS Device descriptor

This is the device descriptor of the implemented CDC + RNDIS prototype
as it appears when probed with the Linux lsusb -v command. Notice that
clarifying string descriptors have been added to all interfaces.

1 Bus 002 Device 002: ID 0bdb:1010 Ericsson Business Mobile Networks BV
2 Device Descriptor:
3 bLength 18
4 bDescriptorType 1
5 bcdUSB 1.00
6 bDeviceClass 2 Communications
7 bDeviceSubClass 0
8 bDeviceProtocol 0
9 bMaxPacketSize0 64

10 idVendor 0x0bdb Ericsson Business Mobile Networks BV
11 idProduct 0x1010
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12 bcdDevice 1.00
13 iManufacturer 1 Ericsson Mobile Platforms AB
14 iProduct 0
15 iSerial 0
16 bNumConfigurations 2
17 Configuration Descriptor:
18 bLength 9
19 bDescriptorType 2
20 wTotalLength 62
21 bNumInterfaces 2
22 bConfigurationValue 1
23 iConfiguration 7 RNDIS
24 bmAttributes 0xc0
25 Self Powered
26 MaxPower 0mA
27 Interface Descriptor:
28 bLength 9
29 bDescriptorType 4
30 bInterfaceNumber 0
31 bAlternateSetting 0
32 bNumEndpoints 1
33 bInterfaceClass 2 Communications
34 bInterfaceSubClass 2 Abstract (modem)
35 bInterfaceProtocol 255 Vendor Specific (MSFT RNDIS?)
36 iInterface 8 RNDIS Communications Control
37 CDC Call Management:
38 bmCapabilities 0x00
39 bDataInterface 1
40 CDC ACM:
41 bmCapabilities 00
42 CDC Union:
43 bMasterInterface 0
44 bSlaveInterface 1
45 Endpoint Descriptor:
46 bLength 7
47 bDescriptorType 5
48 bEndpointAddress 0x85 EP 5 IN
49 bmAttributes 3
50 Transfer Type Interrupt
51 Synch Type none
52 Usage Type Data
53 wMaxPacketSize 0x0040 bytes 64 once
54 bInterval 32
55 Interface Descriptor:
56 bLength 9
57 bDescriptorType 4
58 bInterfaceNumber 1
59 bAlternateSetting 0
60 bNumEndpoints 2
61 bInterfaceClass 10 Data
62 bInterfaceSubClass 0 Unused
63 bInterfaceProtocol 0
64 iInterface 6 Ethernet Data
65 Endpoint Descriptor:
66 bLength 7
67 bDescriptorType 5
68 bEndpointAddress 0x84 EP 4 IN
69 bmAttributes 2
70 Transfer Type Bulk
71 Synch Type none
72 Usage Type Data
73 wMaxPacketSize 0x0040 bytes 64 once
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74 bInterval 0
75 Endpoint Descriptor:
76 bLength 7
77 bDescriptorType 5
78 bEndpointAddress 0x03 EP 3 OUT
79 bmAttributes 2
80 Transfer Type Bulk
81 Synch Type none
82 Usage Type Data
83 wMaxPacketSize 0x0040 bytes 64 once
84 bInterval 0
85 Configuration Descriptor:
86 bLength 9
87 bDescriptorType 2
88 wTotalLength 80
89 bNumInterfaces 2
90 bConfigurationValue 2
91 iConfiguration 3 CDC Ethernet
92 bmAttributes 0xc0
93 Self Powered
94 MaxPower 0mA
95 Interface Descriptor:
96 bLength 9
97 bDescriptorType 4
98 bInterfaceNumber 0
99 bAlternateSetting 0

100 bNumEndpoints 1
101 bInterfaceClass 2 Communications
102 bInterfaceSubClass 6 Ethernet Networking
103 bInterfaceProtocol 0
104 iInterface 5 CDC Communications Control
105 CDC Header:
106 bcdCDC 1.10
107 CDC Union:
108 bMasterInterface 0
109 bSlaveInterface 1
110 CDC Ethernet:
111 iMacAddress 6 Ethernet Data
112 bmEthernetStatistics 0x00000000
113 wMaxSegmentSize 1514
114 wNumberMCFilters 0x0000
115 bNumberPowerFilters 0
116 Endpoint Descriptor:
117 bLength 7
118 bDescriptorType 5
119 bEndpointAddress 0x85 EP 5 IN
120 bmAttributes 3
121 Transfer Type Interrupt
122 Synch Type none
123 Usage Type Data
124 wMaxPacketSize 0x0040 bytes 64 once
125 bInterval 32
126 Interface Descriptor:
127 bLength 9
128 bDescriptorType 4
129 bInterfaceNumber 1
130 bAlternateSetting 0
131 bNumEndpoints 0
132 bInterfaceClass 10 Data
133 bInterfaceSubClass 0 Unused
134 bInterfaceProtocol 0
135 iInterface 0
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136 Interface Descriptor:
137 bLength 9
138 bDescriptorType 4
139 bInterfaceNumber 1
140 bAlternateSetting 1
141 bNumEndpoints 2
142 bInterfaceClass 10 Data
143 bInterfaceSubClass 0 Unused
144 bInterfaceProtocol 0
145 iInterface 6 Ethernet Data
146 Endpoint Descriptor:
147 bLength 7
148 bDescriptorType 5
149 bEndpointAddress 0x84 EP 4 IN
150 bmAttributes 2
151 Transfer Type Bulk
152 Synch Type none
153 Usage Type Data
154 wMaxPacketSize 0x0040 bytes 64 once
155 bInterval 0
156 Endpoint Descriptor:
157 bLength 7
158 bDescriptorType 5
159 bEndpointAddress 0x03 EP 3 OUT
160 bmAttributes 2
161 Transfer Type Bulk
162 Synch Type none
163 Usage Type Data
164 wMaxPacketSize 0x0040 bytes 64 once
165 bInterval 0
166 Language IDs: (length=4)
167 0409 English(US)

B Raw Frame Generator

This is an Ethernet frame-generating Linux program in the C program-
ming language, which just sends out a frame of 60 bytes, filled with ze-
roes. (This was trimmed to different packet sizes while testing.) As can
be seen the MAC address of the interface is hardcoded to the address
0x123456789abc.

1 #include <sys/types.h>
2 #include <sys/socket.h>
3 #include <features.h> /* for the glibc version number */
4 #if __GLIBC__ >= 2 && __GLIBC_MINOR__ >= 1
5 #include <netpacket/packet.h>
6 #include <net/ethernet.h> /* the L2 protocols */
7 #else
8 #include <asm/types.h>
9 #include <linux/if_packet.h>

10 #include <linux/if_ether.h> /* The L2 protocols */
11 #endif
12 #include <sys/ioctl.h>
13 #include <net/if.h>
14
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15 #define PACKETSIZE 60
16 #define MAXETHER 1514
17

18 static int get_ifindex(int sfd, char *intf)
19 {
20 struct ifreq ifr;
21 strcpy(ifr.ifr_name, intf);
22 if ( ioctl(sfd , SIOCGIFINDEX, &ifr) < 0) {
23 printf("Could not locate interface %s.\n", intf);
24 exit(-1);
25 }
26 return ifr.ifr_ifindex;
27 }
28

29 int main(int argc, char *argv[])
30 {
31 char *ifname="eth1";
32 int sockfd;
33 struct sockaddr_ll address;
34 int proto = htons(ETH_P_ALL);
35 int err;
36 unsigned char buf[PACKETSIZE];
37

38 sockfd = socket(PF_PACKET, SOCK_RAW, proto);
39 if (sockfd < 0) {
40 printf("Could not open socket\n");
41 exit(-1);
42 }
43 memset ((void *)&address, 0, sizeof(struct sockaddr_ll));
44 address.sll_family = AF_PACKET;
45 address.sll_protocol = htons(ETH_P_ALL);
46 address.sll_ifindex = get_ifindex(sockfd, ifname);
47 address.sll_hatype = 1;
48 // address.sll_pkttype;
49 address.sll_halen = 8;
50 address.sll_addr[0] = 0x12;
51 address.sll_addr[1] = 0x34;
52 address.sll_addr[2] = 0x56;
53 address.sll_addr[3] = 0x78;
54 address.sll_addr[4] = 0x9a;
55 address.sll_addr[5] = 0xbc;
56

57 // blank packet
58 memset ((void *) &buf, 0, sizeof(buf));
59 buf[0] = 0x12;
60 buf[1] = 0x34;
61 buf[2] = 0x56;
62 buf[3] = 0x78;
63 buf[4] = 0x9a;
64 buf[5] = 0xbc;
65 // Set packet type to IPv4
66 buf[0x0c] = 0x08;
67 buf[0x0d] = 0x00;
68 // Set packet length
69 buf[0x10] = (PACKETSIZE - 14) >> 8;
70 buf[0x11] = (PACKETSIZE - 14) & 255;
71

72 err = sendto(sockfd, &buf, PACKETSIZE, 0x00,
73 (struct sockaddr *) &address, sizeof(struct sockaddr_ll));
74 if (err < 0 ) {
75 printf("Could not send packet... Code %d\n", err);
76 exit(-1);
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77 }
78

79 close(sockfd);
80 }
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