
Pin Control and GPIO Update

Linus Walleij
Linaro Kernel Workgroup
ST-Ericsson

What are we talking about here?

GPIO subsystem provides:
● Reads a one-bit signal as high or low – asserted or unasserted.
● Drives a line high or low – assert or de-assert - a one-bit signal.
● May (or may not) be tied in to per-pin IRQ generation, then uses

the irqchip subsystem.
● Conceptually GPIOs have very few electronic properties, but can be

specified as open drain/open source for e.g. wired-AND, and given
a debounce period.

Pin control subsystem provides:
- Pin multiplexing – allows for reusing the same pin for different

purposes, such as one pin being a UART TX pin, HSI data line or
GPIO due to different multiplexing. Multiplexing can affect groups
of pins or individual pins.

● Pin configuration - configuring electronic properties of pins such
as pull-up, pull-down, driver strength etc.

Dual In-Line (DIL) Packages

Ball Grid Array (BGA) Package

Pin Grid Array (PGA) Package

Pad with
bonding wire

System on
Chip (SoC)

Pad ring

Image sources: the linked Wikipedia entries

http://en.wikipedia.org/wiki/Dual_in-line_package
http://en.wikipedia.org/wiki/Ball_grid_array
http://en.wikipedia.org/wiki/Pin_grid_array

The GPIO Subsystem

∙ The subsystem lives in drivers/gpio/*
∙ Documentation in Documentation/gpio.txt
∙ All GPIO lines are defined in a linear, typically non-sparse

numberspace [0...N]
∙ Consumers request GPIO lines with [devm_]gpio_request(gpio,

label);
∙ Lines can then be set as input or output
∙ Inputs can be read as high or low (returning 1 or 0)
∙ Outputs can be driven high or low (represented by 1 or 0)
∙ GPIOs can be mapped to Linux IRQs. From this point the irqchip

subsystem takes over (determining trig edge etc), but many GPIO
drivers also register an irqchip, so you will often see then in the
code.

∙ GPIOs can be exported to userspace via sysfs

GPIO sybsystem driver interface “gpiolib”
include/asm-generic/gpio.h
struct gpio_chip {

const char *label;
struct device *dev;
struct module *owner;
int (*request)(struct gpio_chip *chip,

unsigned offset);
void (*free)(struct gpio_chip *chip,

unsigned offset);
int (*direction_input)(struct gpio_chip *chip,

unsigned offset);
int (*get)(struct gpio_chip *chip,

unsigned offset);
int (*direction_output)(struct gpio_chip *chip,

unsigned offset, int value);
int (*set_debounce)(struct gpio_chip *chip,

unsigned offset, unsigned debounce);
void (*set)(struct gpio_chip *chip,

unsigned offset, int value);
int (*to_irq)(struct gpio_chip *chip,

unsigned offset);
void (*dbg_show)(struct seq_file *s,

struct gpio_chip *chip);
int base;
u16 ngpio;
const char *const *names;
unsigned can_sleep:1;
unsigned exported:1;

};

struct irq_chip IRQ subsystem interface
include/linux/irq.h

struct irq_chip {
const char *name;
unsigned int (*irq_startup)(struct irq_data *data);
void (*irq_shutdown)(struct irq_data *data);
void (*irq_enable)(struct irq_data *data);
void (*irq_disable)(struct irq_data *data);

void (*irq_ack)(struct irq_data *data);
void (*irq_mask)(struct irq_data *data);
void (*irq_mask_ack)(struct irq_data *data);
void (*irq_unmask)(struct irq_data *data);
void (*irq_eoi)(struct irq_data *data);

int (*irq_set_affinity)(struct irq_data *data, const struct cpumask *dest, bool force);
int (*irq_retrigger)(struct irq_data *data);
int (*irq_set_type)(struct irq_data *data, unsigned int flow_type);
int (*irq_set_wake)(struct irq_data *data, unsigned int on);

void (*irq_bus_lock)(struct irq_data *data);
void (*irq_bus_sync_unlock)(struct irq_data *data);

void (*irq_cpu_online)(struct irq_data *data);
void (*irq_cpu_offline)(struct irq_data *data);

void (*irq_suspend)(struct irq_data *data);
void (*irq_resume)(struct irq_data *data);
void (*irq_pm_shutdown)(struct irq_data *data);

void (*irq_print_chip)(struct irq_data *data, struct seq_file *p);

unsigned long flags;

};

GPIO – irqdomain refactoring

∙ The irqdomain <linux/irqdomain.h> was introduced in july 2011 to
translate hardware IRQs to Linux IRQs

∙ With the number of GPIO controllers with IRQ capability rising, the
number of irq_chip:s in systems are rising

∙ This leads to various “interesting” #define hacks to keep track of
the global IRQ number space, akin to how the global GPIO number
space is managed.

∙ The basic idea is to make the driver only deal with the hwirq, the
IRQ flag offset from zero that the hardware actually produces, then
let irqdomain translate that into a Linux IRQ

∙ In the longer run, Linux IRQ numbers are not necessary. Currently
all IRQs have a number, but could just as well be just descriptors.

∙ The last 2 years we have converted a large number of IRQ-capable
GPIO drivers to use the irqdomain, splitting responsibilities
between drivers and the irq subsystem.

GPIO – descriptor refactoring

∙ Has been on my drawing board for a while
∙ Currently driven by Alexandre Courbot after he observed that we

have no gpio_get() function referencing the consuming device:
compare clk_get(), regulator_get(), pinctrl_get()...

∙ Motivation: get rid of the global GPIO numberspace, be more
abstract enitities connected to consumers, such as the clocks,
regulators or pins

∙ Motivation: the IRQ numberspace also sucks.
∙ Just like in the case with IRQs, first transition the core code to use

descriptors internally, then expose the new descriptor APIs and
modify clients.

∙ Provide fallbacks to map GPIOs to descriptors and vice versa, akin
to irqdomain.

∙ Some patches merged for v3.9, work will continue.
∙ Open debate: shall gpiod_get() return a IS_ERR(pointer) like its

cousins in other subsystems?

GPIO – blocked GPIO requests

∙ Basic problem: several GPIO lines need to toggle values at the
same time, such as a data and clock line. Alternatively you need to
read several GPIO lines with infinitesimal delay between each line.

∙ Since several GPIO lines are often handily placed in the same
register, it is often actually possible to read or write 8, 16 or 32
GPIO lines at the same time. By attaching hardware to lines in the
same register, the problem can be solved.

∙ Has existed in some out-of-tree hacks/forks for a while
∙ Currently driven by Roland Stigge
∙ Mostly OK for kernel-internal interface, sketicism around the sysfs

API/ABI due to perpetual maintenance requirements.

GPIO – next steps

∙ Install the descriptor API and move consumers over to using the
descriptor API

∙ Make sysfs kobjects represent reality, tie GPIO into the device core
properly.

∙ Evaluate the future of the userspace API/ABI
∙ Can we simplify interaction with the irqchip subsystem?
∙ Can we simplify interaction with the pinctrl subsystem?
∙ GPIO hogs?

The Pin Control Subsystem

∙ The subsystem lives in drivers/pinctrl/*
∙ Documentation in Documentation/pinctrl.txt
∙ The subsystem will handle some sanity checks like assuring that a

pin is not used for two functions at the same time.
∙ Drivers can select to implement the pin multiplexing interface or

the pin configuration interface or both.
∙ Drivers can interact with the GPIO subsystem so that GPIO pins

and pin control pins can be cross-referenced – GPIOs have a global
number space.

∙ A pin controller is registered by filling in a struct pinctrl_desc and
registering it to the subsystem with pinctrl_register()

∙ The boards/machines can register a number of pin multiplexing
settings to be auto-activated on boot called pinmux hogs.

∙ Drivers can get/enable/disable/put mux settings at runtime akin to
how they get/enable/disable/put clocks or regulators.

Pin configuration subsystem interface
include/linux/pinctrl/pinctrl.h

struct pinctrl_desc {
const char *name;
struct pinctrl_pin_desc const *pins;
unsigned int npins;
struct pinctrl_ops *pctlops;
struct pinmux_ops *pmxops;
struct pinconf_ops *confops;
struct module *owner;

};

struct pinctrl_ops {
int (*list_groups) (struct pinctrl_dev *pctldev, unsigned selector);
const char *(*get_group_name) (struct pinctrl_dev *pctldev,

 unsigned selector);
int (*get_group_pins) (struct pinctrl_dev *pctldev,

 unsigned selector,
 const unsigned **pins,
 unsigned *num_pins);

void (*pin_dbg_show) (struct pinctrl_dev *pctldev, struct seq_file *s,
 unsigned offset);

};

The Pin Control Subsystem History

∙ Designed to counter the churn in the ARM arch/arm/* architecture.
Too many “necessarily different” pin control schemes were running
amok in the arch.

∙ Grant would not let med export gpio_to_chip() in the autumn of
2011. (Ironically it is exported now.)

∙ The first iteration of the Pin Control subsystem was basically a
patch set I evolved from the U300 arch/arm/mach-u300/padmux.[c|
h]

∙ Several people provided extensive feedback, notably Stephen
Warren from nVidia.

∙ The tenth iteration of the patch set was eventually pulled into the
mainline kernel for v3.2 with support for U300.

∙ Several bug fixes, a basic pin configuration interface and a new
driver for Sirf Prima II was integrated into kernel 3.3

∙ Kernel 3.4 introduced pin configuration states, and the API that
expose a single struct pinctrl * handle to consumers, and define a
separate struct pinctrl_state * container to hold a certain state for
a consumer.

UML makes everything so much clearer

Who has moved in?

∙ ST-Ericsson: U300, Nomadik, and NovaThor (Ux500), ABx500 (v3.9)
∙ CSR: Sirf Prima II
∙ Nvidia: Tegra 20, 30, 114 (v3.9)
∙ Intel/Marvell: PXA 168, 910, MMP2
∙ Marvell: Armada, Kirkwood, Dove
∙ Freescale: i.MX 23, 28, 35, 51, 53, 6q
∙ STMicroelectronics: SPEAr
∙ Atmel: AT91
∙ Samsung: Exynos 5440
∙ Broadcom BCM2835
∙ pinctrl-single: abstract variant intended for OMAPs and HiSilicon
∙ MIPS Lantiq: Falcon, xway
∙ Super-H: all variants, also ARM shmobile (v3.9)

Prospects: Samsung S3P, OMAP variants, DaVinci, EP93xx, mach-
imx/iomux*, MSM, ..

Pin Control Subsystem – Next Steps

∙ Grab default handles from the device core (v3.9)
∙ Possible to handle sleeping hogs (v3.9)
∙ One PCI driver in the works (Alessandro Rubini)
∙ Make pinctrl and GPIO and irqchip live closer together?
∙ Expand and encourage generic pinconfig?
∙ Propose standardized DT bindings using generic pinconfig for

future platforms?
∙ Create a pin controller with an additional set of operations

basically providing all of a struct gpio_chip, and expose a
gpio_chip?

∙ Runtime PM helper inlines.
∙ Will people need a userspace API/ABI?

THANK YOU

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

