
On Exploiting Declarative Programming and Parallel Execution
in Computer Based Real-time Systems

Bengt Lennartsson (Email: BenLenQCarlstedtse)
Nahid Shahmehri (Email: NahShaQCarlstedt.se)
Staffan Bonnier (Email: StaBon@Carlstedt.se)

Carlstedt Elektronik AB,
Industrivagen 55,

S-433 61 PARTILLE, Sweden.
Phone: (4 6) 31 - 26 21 80
Fax: (+46) 31 - 26 21 81

Abstract
This paper presents experiences from modelling

real-time applications in the declarative functional
language H developed hand-in-hand with a novel
rp8401 parallel graph reduction architecture, both
designed with the requirements from real-time em-
bedded systems in mind. In rp8601 the analog and
digital interactions with the environment have been
designed into the chips and into the language, and so
have mechanisms to handle time constraints.

Traditionally declarative programming means that
the programmer need not be aware of the processor
operations. Instead he can focus on the abstract rela-
tions between the input and the output streams. The
specific real-time requirements have normally not
been taken into account in the declarative view.

Our conclusion is that declarative functional pro-
gramming is a viable technique for the development of
complex software for embedded real-time systems.
However, considerable efforts have to be spent on ed-
ucating and training the application programmers in
the new programming paradigm.

Background and acknowledgement
This paper presents an overview of a development

project at Carlstedt Elektronik AB. The comerstones
in this project are the language H and the pamllel
graph reduction architecture rp8601, both originating
from Gunnar Carlstedt. As early as 1986 he presented
his EuroMicro paper A Language for Behavior, Struc-
ture and Geometry [l]. The last sentence in this paper
reads: The language will be called “H”.

Since then many persons have been involved in
transforming Gunnar Carlstedt’s visionary ideas into
a working system. The role of the authors of this paper

is just to give a summary of what all these people have
developed, and to illustrate by a very simple example
how H and rp8601 can be used in a sequence control
application.

All the persons who have contributed: the employ-
ees at the company, its Scientific Advisory Group,
and others, are hereby deeply acknowledged.

1 Introduction
The rp8601 project is aiming at exploiting the com-

bination of two maturing and well researched ideas:
massive parallelism and declarative programming.
Parallelism gives better system performance as the to-
tal capacity available is equal to the power of each
processing element multiplied by the number of such
elements. The objective for a declarative language is
increased programmer productivity and higher pro-
gram quality. The programmer can directly specify
the operations in terms of the rules and the constraints
the computation has to obey, rather than as al l the
small steps for the operations and data movements.

However, previous attempts to exploit parallelism
have, in the general case, failed due to the difficulty to
efficiently distribute the total computation over all the
available parallel processors. In order to distribute the
computation over the parallel hardware, a large
amount of manual control of the program execution
and of the load balancing have been needed. The in-
dustrial use of declarative languages has so far been
rather limited, mainly because of performance prob-
lems due to the mismatch between the declarative lan-
guages and the von Neumann hardware architecture.
Hence the increased performance by parallel execu-
tion has been paid for by increased programming ef-
forts. The reduced programming effort by means of

131
0-8186-5715494 $04.00 0 1994 IEEE

declarative languages has resulted in the penalty of
relatively slow execution.
The combination of the declarative language H and

the specially &signed parallel hardware architecture,
rp8601, gives all the benefits mentioned above, but
without the extra costs and penalties! Instead there are
even more benefits as H and rp8601 smngly support
each other.
1.1 Implications from the declarative

programming language H
The progntmming language H will in the fmt prod-

uct generation be a functional language. Later on logic
programming features like logical variables and unifi-
cation may be added if required.
The execution of the purely functional language H

is free from side-effects. A symbol denoting a variable
can not change from one value to another during the
execution of a program, i.e. the “variables” in H do
not “Vary” as they can do in imperative languages. A
symbol in H is defined by an expfession, and during
execution this expression is reduced until only one
single canonid value remains. Thus a symbol stands
for a constant value, perhaps not yet known. l lanks
to hedom fiom side-effects, a reference to a value
can always be replaced by the value itself. The execu-
tion mechanism employed for functional pgrams is
called reduction. The result will be the same inde-
pendently of the order in which the reductions are
d. They can be made fully in parallel, and no ex-
tra infomation from the programmer is needed. A
general presentation of the princiiles of declarative
programs can be found in [2] and [3]. The references
[41 and [SI give an introduction to reduction and to the
implementation of functionai languages in general.

Hence, if there were any hardware architecture able
to reduce all reducible subexpressions in parallel, it
would exploit aU the inherent parallelism available in
tbe problem. The architecture of rp8601 is based on
thisidea
Thus the declarative nature of the H language has

two major implications:
1. The H programmer need not use his time to specify

in which order different operations are performed
as must tbe programmer in an imperative language.

2. On execution of an H progfam, parallel graph re
duuion hardware can directly be fully exploited
withwt any extra effort or infomarim from the
Programmer.
The graph Feduction strategy used for execution of

H programs enables sharing of subgraphs, so reduc-
tions do not have to be repeated when the result is
needed at different ‘’places9’ in the total computation.

1.2 Consequences of the rp8601
architecture

rp86Olsystems are built from two basic oomponent
types: the compute memory and rhe port memory. The
computememory corresponds to the processor and its
local memory in a traditional multipmcesor system.
Tbe port memory plays the role of an U0 processor to-
gether with its local program memory and Yo buffers.

Flgurp 1 One single system composed of compute
memories, C, and port memories, P.
Tbe comparison with traditional systems is mis-

leading, bowever. ’Ibe rp8601 is based on associative,
ar content addressable, memory. A specific physical

dress or label. The only means available to address a
location is by its anrent contents. Both the compute
memory and the port memory components irre based
onthesame” forasouatl * ‘veaddressing.

The associarive memory has the general property
of strongly supporting global search operations. It is
also very powerful during execution of H programs,
and it makes the garbage collection extremely effi-
cient. Assume that an H variable x is referend from
many places in the program, that is, the value of x is
needed for the reductim of many (sub-)expressions.
when the value of x bas reduced to canonkal form,
this value will be braadcast togeUm with the symbol
x, andall refelenas to xcanbefeplacedby this ca-
nonical value in one single memory operation!
1 3 Conceptual architecture versus

engineering design decisions

memory location has no p e ” t l y assigned ad-

Many engineering trade-off decisioos are about
granularity. What word length is most appropriate?
Should the instruction set contain complex composite
operations ar be based on a RISCphilosophy? In most
such situations there are extreme points, and the opti-
mal design, based on experience and engineering
howledge, is samewhere m betweea.

In rp8601 these are alsomany such trade-off deci-
sions, and it is veay likely gome of them will change
as more experience will be gatbered. Some examples:

Wemory word size”: Each storage unit holds a
“closure”, ar a graph node, consisting of four ‘W-
ue fields”, a colltext field, a closure type field, an at-

132

tribute field, and an identifier. The four ‘‘value
fields”, the context field, and the closure identifier
field each has 32 bits “data” + a 6 bit tag field + er-
ror detectiodcomtion bits. So each storage unit
has space for 192 bits, 24 bytes. However, due to
the extra type and status information in the tag and
attribute fields, and to the more compact represen-
tation of functions and operators, one storage unit
of rp8601, one closure, holds more information
than do 24 bytes in a traditional system.
Size of a compute memory module: In the compute
memory each storage unit holding a 24 byte c b
sure, as described above, is capable of simple oper-
ations like replacing an identifier by a value.
However, each storage unit does not have the full
power for arithmetic and logical operations. It
would be possible to give this power to each stor-
age unit, but that would mean a considerable waste
of silicon area. As only a small fraction of the
nodes of the graph, or the closures in the memory,
have the information needed for immediate reduc-
tion, there need not be reduction power available
for all closures at the same time. On the other hand
only one processing unit per system would mean
that the possibility for parallel operations would
not be exploited. So, a natural solution is to have
“processors” available for a suitable fraction of the
storage units. Currently a Compute Memory has
5 12 storage units (closures) and one core cell con-
taining a reduction unit and a numeric unit. A port
memory module has in the current plan the same
storage capacity, 512x24 bytes = 12 U, plus type
and status information, as the compute memory
has.
Scheduling strategy: When processing power is the
bottleneck, demand driven evaluafion’ is a natural
strategy. Demand driven means that a computation
is postponed until the result is really needed. In a
system having a surplus of processors data driven
evaluation’ may be more appropriate. If you eval-
uate an expression as soon as the required values
are available, you are applying data driven evalua-
tion. Fully demand driven evaluation is one of the
extreme points. Processing power is saved and in-
finite data streams can be used. At the other ex-
treme point, fully data driven, computable data is
always available in case it is needed. Demand driv-
en evaluation and real-time requirements do not
match very well. A fully data driven strategy and

infinite data structures may create pblems. So
even here some middle way has to be taken.

2 Real-time constraints vs functional
pWFa”ing

The rp8601 architecture and the H language have
been designed with embedded real-time applications
in mind. The most important characteristics for this
class of applications are:
1. Unconventional Y O the computer system and its

physical environment are interacting via digital
and analog signals.

2. The interaction between computer system and its
environment must take place at prescribed pints in
time (at regular intervals, within a certain time in-
terval after an extemaI event, or at a certain value
of the external “real time”).

3. The embedded systems are generally running “for
ever” rather than terminating after having comput-
ed a result as a function of the input.

4. The computation in an embedded application often
contains a model of the dynamic physical environ-
ment, and such models have in general a periodi-
cally updated state as the main component.
The properties 1-4 above are generally not associ-

ated with functional programs. In our case the uncon-
ventional YO is taken care of by the powerful rp8601
port chips. This will, however, not be discussed any
further in this paper. In the following it will be illus-
trated by means of an example how the aspects 2-4 are
handled.

Other declarative languages taking some of the
real-time requirements into account are Strand [81 and
Erlang [9]. The concurrency in Strand and Erlang are
of the type “interacting sequential processes” while H
has much finer granularity in its parallelism.

3 The H language
The language H is intended for both applications

and systems programming, and is divided into two
sublanguages:

HUF: The Functional definition sublanguage.
Hus: The System description sublanguage.
The general idea is that most application program-

ming can be done using only the graphical system de-
scription language. Thus it is necessary that a large
and powerful library of predefined primitive functions
and boxes are available.
3.1 The functional definition sublanguage

HUF allows functions to be defined in a way similar
to traditional functional languages (such as ML,

l.Oihe.r names for demand driven are: lazy cvaluation,
b a c h r d chaining, or conservative evaluation. Instead of
a b driven the terms: eapcr evaluation. soeculative ” . .
evaluatim, or forward chaining are used. Haskell etc.) [6-71. Tbe language HUF provides:

133

A module system, admitting selective exportation
of dehed objects (such as types and functions).
This enables the definition of abstract data types.
A type checking system, allowing both polymor-
phism and subtyping. The latter implies a more ex-
pressive language of types than the one used in
traditio~~I Hindley-Milner systems [5].
pa#em matching as am- for discriminating ar-
guments m function applications.

3.2 The system description sublanguage
This sublanguage HUS allows the user to express

the relations between input and output streams in a
graphical notation. The diagrams aremade f” basic
building blocks interconnected by streams. At this
level the flow between pats is specified and analysed.
Tbe language H u ~ provides:

A graphical and a textual syntax. The language is,
however, primarily graphical.
A module system, allowing diagrams to be en-
closed in boxes. These boxes may themselves be
used as (non-primitive) building blocks.
A type system, ensuring that the flow in diagrams
will not be blocked by incompatible connections.

4 A traffic light controller example
Let us now illustrate how H may be used for pro-

gramming a traffic light controller. Cables connect the
real-time environment to threeports of the computer
system. ’Ibe ports are: the sensor part, the NS-Light
port and the EW-Light port.
4.1 The problem spedfcation
Tbe behaviour of the traffic lights can be described

by the two cycles below. The NS sensors are checked
at certain times. Depending on the result one of the
two following sequences of behaviours will be initiat-
ed, (G. Y. and R are used to denote the colours: green,
yellow, and red, respectively).

Figure 2 Traffic lights controlled by rp860l.

a) No waiting car detected by the NS sensors:
(1) keep EW lights G, and NS R, for another 15 s;
(2) check NS sensors again.

b) Waiting car detected by the NS sensors:
(1) turn EW lights to G+Y for 2 s (still R on NS);
(2) t u ” S lights to R+Y andEW to R for2 s;
(3) turn NS lights to G for 10 s (still R on EW);
(4) turn NS lights to G+Y for2 s (still R on EW);
(5) turn NS lights to Rand EW to R+Y for 2 s;
(6) turn EWlights to G for 15 s (still R on NS);
(7) cbeck NS s e w n again.

The sensors are thus checked for the presence or
absence of cars on the NS road at the end of each cy-
cle.
4.2
An HUS program umsists of a number of building

blocks interconnected by streams. A stream is consid-
ered an infinite seqmwe (list) of values. A building
block consumes its input streums and produces its
output streams. A stream is represented as an arrow.
When attached to a block, its direction indicates
whether it represents an input or an output stream of
the block.

A box descnptwn is an encapsulation of an HUs
program. Thus box descriptions serve as modules of
the language. Input and output co~ecto fs of the pro-
gram become input and output sockets of the descrip-
tion (“valleys” and “hills” on its border respectively).

The input and output CoRnectOrs of a program
Serve as the interface between the program and the ex-
temal world. To defme aprogram we need three kinds
of blocks’, see Figure 3.

The top level Hm program

An input An output A box description
connector connector with one input

stream, two output
streams, and two
parameters.

The three kinds of elementary building Figure 3
blocks Of HuS

In order to put a box description into use, an in-
stance of the description must be created. Such an in-
stance is simply called a box. It is obtained by
instantiating the formal parameters of the description
and by connecting its sockets. There are two ways of
establishing tbe latter:

By connecting the input and output sockets to
ports. The program of the box description is then
made to interrsd directly with external devices con-
nected to the ports.
By connecting the input and output sockets to
streams. The box may then be used as a building
block of a larger program.

1. The ~ o c e o f h symbob k very preliminuy. It will
dmge aa the language evolves. .nd the maucte graphical
syntax may be med to particular application ems.

134

The top-level program is encapsulated in one sin-
gle box description, Figure 4. The sensor state (car or
NoCar) is the input on the top. The NS light (G, GY,
R, or RY) is output at the bottom, left, and the EW
light (G, GY, R, or RY) at the bottom, right.

trafficcontrol

Figure 4 Top level ci3 program.

The box trafficcontrol defines the relation
between the input stream and the output streams.
There is a notion of “real” time; the green EW and the
red NS light shall be maintained for 15 s, for instance.
In the following it will be shown how these non-func-
tional properties can be modelled in the functional
framework.

To model real-time we need two more symbols in
our graphical language, see Figure 5.

a b
A clock tick generator;
time T between ticks.

A stream controlled
input connector.

Figure 5 Two more elementary symbols.
The clock tick generator has no input. After initial-

isation it emits a token, a tick, every T seconds. The
stream controlled input is a symbol making the re-
quest for input explicit at the system description lev-
el’. After initialisation the input connector will
convey a value from the environment to the executing
program every time a token arrives at the arrow of the
input connector symbol in Figure 5 b.

Thefunction box serves as an interface between the
graphical Hus and the textual HuF. A function box
description, having n parameters and m input sockets,
must be defined in terms of a function taking n+m ar-
guments, the last m of which are streams.

In HUF there must be afinction type definition:

(where t p l denotes the type of p l etc.) followed
by thefunction rules defining how the output stream
r can be computed from the parameters p 1 and p2 and
the three input streams; see Figure 6.

A straight forward request-driven “declarative”

f : : tpl->tp2->tp3->tp4->tpS->tr

1. The general model for the ports in H is that there is a
request streum sent to the port, and a response streum from
the port to the executing program. It may often be the case,
however, hat the request stream is invisible at the system
desaihon level; its role is confined to the low level
configuration of the port.

Fl f Pl P2

7-
Figure 6 A function f with five (positional) param-
eters PI, p2, p3, p4, p 5 , where p3, p4 and p5 are
the three streams, from left to right, entering the box
at the top.

implementation of the trafficcontrol is illustrat-
ed in Figure 7, where c 1 and c2 are the cycles defined
as:
c l = [(15, (G,R)) I ;
C2 = [(2 , (GYrR)), (2, (R,RY))r

(10, (R,G)), (2 , (R,GY)),
(2, (RY,R)), (15, (G,R)) I ;

I 1 I

Figure 7 The content of trafficcontrol. The
definition is partly in the graphical Hus language and
partly in the purely functional H,, .

cycle is defined as a list of phases:
Each cycle consists of a number of Phases. Thus a

type Cycle = [Phase 1 ;
A Phase consists of a pair of time duration and

colour indication. The colour indication is itself a pair
which indicates the colour of the traffic lights on the
EW and NS roads for the duration defined by the fust
element of the phase.
type TimeDuration = Nat;
type Phase =

(TimeDuration, (Colour,Colour)) ;
The diagram is itself composed f” instances of

three different box descriptions, namely:
cycleSelector, splitCycle, and 1ightTimer.

4.3 Implementation of the details
At initialisation the tokens GetInput and Get-

Phase will be present on their streams, and the clock
ticks are emitted every second from then on. Car or
NoCar will be sent from the input connector and, de-
pending on which token is present, the fmt tuple of c i

135

or c2 will be transferred selected by the cyclese-
lector. In Hm the type definitions for clock ticks,
light colours, car sensors and the definition of the
function cycleselector are as below:
data ClockTick = Tick;
data Colour = G I Y I R I RY I GY;
data Carsensor = Car I NoCar;

cycleBelector : :
t(CarBoneor, Cycle)] ->

Btroam CarBonaor -> Stream Cycle;
cycleSelector behaviour (sensor:sensors)

- -
(assoc [I behaviour sensor) :
(cycleSelector behaviour sensors);

The predefined assoc function returns the cycle
which corresponds to the car sensor value (Car or No-
car).

The EW and the NS lights defined in the tuple will
be sent to the output connectors, and after the pre-
scribed time interval a new phase will be quested by
means of a new Get Phase token. This will proceed
until there are no more phases in the cycle. Then new
sensor information will be asked for, and a new cycle
will be selected dqxmding on Car or NoCar.
This infonnal explanation illustrates the modelling

of the application at the graphical system description
level Hus.

PhasePlus

RequestInput

Figure 8 Definition of the box splitcycle.

The splitcycle box is m m complex than the
previously discussed cycleselector function box.
'Ihisbox ca"unicates with the box 1ightTimer. It
sends one Phase at a time on arrival of a GetPhase
request When the last phase is consumed it sends a
GetInput request to the input COM~C~OZS. This is
done by defining the two function boxes let-
Through and pass. In HUF the type defmitions for
GetInput and GetPhase are:
data Requestphase = GetPhase;
data RequestInput = GetInput;
type PhasePlus = Phase I RequestInput;
1etThrough::
Btream Cycle -> Stream RequeetPhaee ->

Btream PhaeePlua;

letThrough ((phase:cycle):cycles)
(GetPhase:gphase) =
phase :
(1etThrough (cyc1e:cycles) gphase) ;

letThrough ([]:cycles) (GetPhase:gphase)

GetInput: (1etThrough cycles gphase);
Box pass (==) GetInput passestheinputval-

ues which are equal to GetInput and filters away
other values. Box pass (/ =) GetInput performs
the opposite filming.
paaa ::
(PhaaePlue -> PhaeePlue -> Bool) ->

- -

RequeatInput -> Btream PhaeePlue ->
Btream PhaeePlua;

pass p comp (phasep:cycle) =
if (p phasep comp)
then (phasep : (pass p cycle))
else (pass p cycle);

Figure 9 Definition of the box split.
The '@' before a function name in a function box,

see Figure 9, means that the function is from the ele-
ment of the input streams to the element of the output
stream rather than on the whole streams. This is
known in the functional programming community as
the map function. The two functions f st and snd
from Figure 9 are defined as:
f8t :: (a, b) -> a;
fst (x, -1 = x;
end I : (a, b) -> bi
snd (- I Y) = Y;

ClockTic

NS-Light EW-Light
Figure 10 Definition of the box 1ightTimer.

The delay function takes a time d d o n t and a
s t " of clock ticks as input and produces a Get-
Phase when t clock ticks has passed. This is
achieved by transferring into an interndl state. Tbe
technique can be studied in detail in, for example, [2].

136

delay ::
Stream TimeDuration - >

Stream ClockTick - >

delay ((duration+l) :durations)
Stream RequeetPhaee;

(Tick: ticks) =
delay (duration : durations) ticks;

GetPhase: (delay durations ticks) ;
delay (0:durations) (Tick:ticks) =

4.4 Comments on the implementation
One property of this implementation of t ra f f ic -

Control is that tokens occur on the streams only
when requested by the receivers. Where the ordering
of events or of computations is essential, the control
has been made visible and explicit by means of the
two request streams in Figure 7. The duration of the
phases is controlled by the ticks from the clock tick
generator. It is assumed that the computation in the
boxes will be done “immediately” when the required
input tokens arrive. The strategy is similar to what is
called resource adequate systems in 1103. The as-
sumption that sufficient processing power is available
is quite realistic in the rp8601 case. The structure of
the algorithm, Figure 7, together with the surplus of
processing capacity, guarantees that the intemal
streams will not be flooded, and that the phase dura-
tions will be as required.

5 Conclusions
This very simple example illusmites the principles

for module definition and interconnection in H. Once
a module has been defined and implemented, it can
serve as an off-the-shelf reusable component. Such
building blocks can be defined at any level of com-
plexity; they can be built by interconnecting simpler
boxes by means of streams, or they can be defined in
terms of higher order functions.

The combination of the graphical HUS and HUF has
turned out to be very useful and expressive in different
domains, not only for the simple sequence control
problem used as an illustration in this paper. High
speed signal processing and direct digital control are
two other target areas. So far our experience is that the
domain of real-time applications can be added to the
areas where a declarative language has turned out to
be superior to imperative languages.

The power of graphical tools for building applica-
tions from module libraries has been demonstrated by
the AMPL language at ABB. and by the SattLine sys-
tem from SattContml [l l] in industrial automation.
After some hundred library functions have been de-
fmed, almost all application development can be done
in terms of connecting existing function blocks.

Due to the freedom from side-effects and to the

power of the higher order functions in H, the function
blocks themselves can be implemented much faster
and safer than in the imperative way. The H language
and the programming environment will make the in-
terconnecting work safer and faster. H and rp8601 are
now being tested in a full scale Automatic Guided Ve-
hicle application. The experience so far is that the
principles shown in the traffic light example really
scale up.

Comparisons between Eirlang and imperative pro-
gramming in telecommunication applications within
Ericsson show similar results.

6 Futurework
The development of H and rp8601 will proceed,

and they will be introduced to the real-time systems
market. By then, the language as well as the develop-
ment support environment and the development meth-
odology will have evolved further. We will encourage
studies to measure how programmer productivity may
be improved by the use of a declarative language. As
rp8601 is aiming at removing the current penalty of
poor runtime efficiency, order(s) of magnitude in in-
creased productivity by means of expressive declm-
tive languages will mean a lot.

References
[11 G. Carlstedt: A language for behavior, structure and geometry.
P m e d n g s Eurom‘cro ’86. Venice, Italy, September 15-18, 1986.

[2] H. Abelson, G. J. Sussman: Structure and Interpretation of
Computer Program. The MIT Press. The MIT Electrical Engineer-
ing and Compter Science Series. 1989. ISBN 0-262-01077-1.
[3] A. J. Field, P. G. Harrison: Funct iml Progmmming. Addison-
Wesley Publishing Company. International Computer Science Se-
ries. Reading 1988. ISBN 0-201-19249-7.
[4] R. F%meijer, M. van Eekelen: Funct iml Programming and
Parallel Graph Rewriting. Addison-Wesley Publishing Company.
International Computer Science Series. Padstow, Cornwall, UK,

[5] S . L. Peyton Jones: The Implementation of Functional Pro-
gramming Languages. Rentice-Hall International Series in Com-
p t e r Science. New York, June 90. ISBN 0-13-453333-X.
[6] A. Wikstrom: Functi~mal Progmmming Using Standand ML
Rentice-Hall International Series in Computer Science. Cam-
hidge, 1987. ISBN 0-13-331968-7.
[7] P. Hudak et.al. (4s): Report on the Pmgramming Language
Haskell - A Non-strict, Purely Functional Language. Version 1.2.
March 1992. ACM SigPlan Notices. 27. (5). pp.1-164.
[8] 1. Foster, S. Taylor: Strand - New Concepts in Parallel Pro-
gramming. Rentice-Hall, Inc. New Jersey 1990. ISBN @13-

[9] J. Armstrong, R. Viiding, M. Williams: Concurwnt Ptugmm-
ming in ERDWG. Rentice-Hall International. Trowbridge, Wil-
shire, UK, 1993. ISBN 0- 13-285792-8.
[lo] H. W. Lawson: Cy-Clone - An Approach to the Engineering of
Resource Adequate Real-time Systems. Real-Time Systems. Vol4.
No 1. (March 1992).
[l l] H. Elmqvist:AnObjectandData-Flow BasedVisualLanguage
for Process Control. Proceedings of Instrument Society of America
(IW2-C&), Toronto, Canada, Apnl28-30,1992.

p ~ . 567-580.

1993. ISBN 0-201-41663-8.

850587-X.

137

