
Theoretical Computer Science 900 (2022) 53–78
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Upper and lower degree-constrained graph orientation with

minimum penalty ✩

Yuichi Asahiro a,∗, Jesper Jansson b, Eiji Miyano c, Hirotaka Ono d

a Department of Information Science, Kyushu Sangyo University, Fukuoka 813-8503, Japan
b Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan
c Department of Artificial Intelligence, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
d Graduate School of Informatics, Nagoya University, Nagoya 464-8601, Japan

a r t i c l e i n f o a b s t r a c t

Article history:
Received 28 January 2021
Received in revised form 15 November 2021
Accepted 27 November 2021
Available online 2 December 2021
Communicated by A. Casteigts

Keywords:
Graph orientation
Degree constraint
Penalty function
Inapproximability
Tree
Treewidth

In the degree-constrained graph orientation problem, the input is an unweighted, undirected
graph G = (V , E) and nonnegative integers av and bv (with av ≤ bv) for each v ∈ V , and
the objective is to assign a direction to every edge in E in such a way that for each
v ∈ V , the number of outgoing edges in the resulting directed graph lies in the interval
[av , bv]. When such an orientation does not exist, it is desirable to find an orientation
that best fits the condition instead. In this paper, we consider the problem of finding
an orientation that minimizes the total penalty

∑
v∈V cv , where cv is a penalty incurred

whenever a vertex v violates its degree constraints. As penalty functions, convex, concave,
and step functions are considered in this paper. We show that the problem with any convex
penalty function can be solved in O (|E|1.5 min{log(|E| · C), |E|0.5 log � log |E|}) time, where
� and C are the maximum degree and the largest magnitude of a penalty, respectively.
In contrast, we show APX-hardness of the problem with step or concave functions. For
trees and graphs with treewidth τ , the problem with any penalty function can be solved
exactly in O (|V | log �) time and O (τ 2�2τ+2|V |) time, respectively. Finally, we consider the
generalization of the problem to edge-weighted graphs and establish strong bounds on its
inapproximability that hold even in the special case of stars. On the positive side, we can
extend our algorithms for unweighted version of the problem to obtain pseudo-polynomial-
time algorithms for the edge-weighted problem variant when restricted to trees and graphs
with bounded treewidth. Also, we design a PTAS and a linear-time algorithm for stars with
further restrictions on the degree constraints and edge weights.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Notation and problem definition

Let G = (V , E) be an unweighted undirected graph, where V and E denote the sets of vertices and edges, respectively.
The vertex set and the edge set of G is also denoted by V (G) and E(G). We allow G to have parallel edges; G is possibly a

✩ A part of the results in this paper appeared in Proceedings of Computing: The Australasian Theory Symposium (CATS 2012), Conferences in Research
and Practice in Information Technology, Vol. 128, pp. 139–146, 2012.

* Corresponding author.
E-mail addresses: asahiro@is.kyusan-u.ac.jp (Y. Asahiro), jj@i.kyoto-u.ac.jp (J. Jansson), miyano@ai.kyutech.ac.jp (E. Miyano), ono@i.nagoya-u.ac.jp

(H. Ono).
https://doi.org/10.1016/j.tcs.2021.11.019
0304-3975/© 2021 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.tcs.2021.11.019
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2021.11.019&domain=pdf
mailto:asahiro@is.kyusan-u.ac.jp
mailto:jj@i.kyoto-u.ac.jp
mailto:miyano@ai.kyutech.ac.jp
mailto:ono@i.nagoya-u.ac.jp
https://doi.org/10.1016/j.tcs.2021.11.019

Y. Asahiro, J. Jansson, E. Miyano et al. Theoretical Computer Science 900 (2022) 53–78
Fig. 1. Example of MPDCOp : (a) An undirected graph G = (V , E); (b) an orientation � of G with outdegree sequence (1, 1, 5, 0, 2, 2, 0, 2) from the left top
to the right bottom; (c) an orientation �′ of G with outdegree sequence (1, 1, 3, 0, 3, 3, 0, 2).

multi-graph. Throughout the paper, let |V | = n and |E| = m for the graph. Two vertices u and v are called adjacent to each
other if {u, v} ∈ E . Let NG(u) be the set of adjacent vertices of u in G , i.e., NG(u) = {v | {u, v} ∈ E}, and dG(u) = |NG(u)|
is called degree of u in G . We omit the subscripts G ’s of NG(u) and dG (u) if it is clear from the context; sometimes
we use N(u) and d(u) instead of NG(u) and dG (u). We denote max{d(v) | v ∈ V } by �. An orientation � of G is a set
of an assignment of a direction to each edge {u, v} ∈ E , i.e., �({u, v}) = (u, v) or (v, u). We simply use � to represent
�(E) = ⋃

e∈E {�(e)} if no confusion arises. We denote the directed graph obtained from G and � by �(G) = (V , �(E)). The
outdegree of a vertex u in �(G) is |{(u, v) | (u, v) ∈ �}|, which is denoted by d+

G (�, u).
Assume that V = {v1, v2, . . . , vn} and that a sequence of 2n nonnegative integers avi and bvi satisfying avi ≤ bvi for

1 ≤ i ≤ n is given. A degree-constrained orientation is an orientation � of G such that avi ≤ d+
G (�, vi) ≤ bvi holds for every

vi ∈ V . Obviously, G does not always have a degree-constrained orientation. In such a case, we would like to find an
orientation that “best” fits the degree constraint.

For a graph G = (V , E), an orientation � of G , and a vertex vi ∈ V , we define a cost function cG such that cG (�, vi) =
d+

G (�, vi) − bvi if d+
G (�, vi) > bvi , cG(�, vi) = avi − d+

G (�, vi) if d+
G (�, vi) < avi , and cG(�, vi) = 0 otherwise. Then the

violation vector cG(�) for a graph G and its orientation � is defined as (cG (�, v1), cG(�, v2), . . . , cG(�, vn)). For a vertex
vi with outdegree k under some orientation, we sometimes denote its cost by θvi (k), that is, θvi (k) = k − bvi if k > bvi ,
θv (k) = avi − k if k < avi , θvi (k) = 0 otherwise. The purpose of defining θvi (k) is to estimate the cost on a vertex vi only
depending on its outdegree regardless of orientations. For an orientation � of G , it holds that θvi (d

+
G (�, vi)) = cG(�, vi). A

penalty function p is a finite, nonnegative, and nondecreasing function with n variables. By using these, we define the best-fit
orientation to the degree constraint by an orientation � of G that minimizes the total penalty p(cG(�)) (of �)

Given an input graph G = (V , E) and two nonnegative integers av and bv for each v ∈ V satisfying av ≤ bv , the Minimum
Penalty Degree-Constrained Orientation problem with a fixed penalty function p (MPDCOp for short) asks for the best-fit
orientation of G .

As an example of an instance of MPDCOp , see the undirected graph G = (V , E) in Fig. 1-(a). Let av = 1 and bv = 2 for
any v ∈ V . Figs. 1-(b) and (c) are two directed graphs obtained by orientations � and �′ , respectively. We first consider
the case when p is a summation of a convex function g1(x) = x2 for each vertex, i.e., p(cG(�)) = ∑

v∈V g1(cG(�, v)). By
the orientation � of Fig. 1-(b), the outdegree sequence of the vertices is (1, 1, 5, 0, 2, 2, 0, 2) in the column-major order
from the left to the right. Thus its violation vector cG(�) is (0, 0, 3, 1, 0, 0, 1, 0) and so the total penalty p(cG(�)) is ∑

v∈V g1(cG(�, v)) = 32 + 12 + 12 = 11. On the other hand, by the orientation �′ in Fig. 1-(c), cG(�′) = (0, 0, 1, 1, 1, 1, 1, 0)

and p(cG (�′)) = ∑
v∈V g1(cG(�′, v)) = 12 + 12 + 12 + 12 + 12 = 5.

As another example, consider the case that p is a summation of the following concave function g2(x) instead of g1(x):

g2(x) =
{

x if 0 ≤ x ≤ 1,

1 if x > 1.

Then, the total penalty p(cG(�)) of � is
∑

v∈V g2(cG(�, v)) = 1 + 1 + 1 = 3, and the total penalty p(cG(�′)) of �′ is ∑
v∈V g2(cG(�′, v)) = 1 + 1 + 1 + 1 + 1 = 5. The “balanced” orientation �′ in Fig. 1-(c) is worse than the “unbalanced”

orientation � in Fig. 1-(b) for the pair of G and g2. Also, note that the total penalty highly depends on the values of av and
bv .
54

Y. Asahiro, J. Jansson, E. Miyano et al. Theoretical Computer Science 900 (2022) 53–78
In this paper, we assume that all penalty functions are linearly separable, i.e., any penalty function can be written as
p(cG(�)) = ∑

v∈V g(cG(�, v)) for some nonnegative nondecreasing one-variable function g with g(0) = 0. The function g is
called the separated penalty function (of the penalty function p). Namely, the penalty on each vertex v under an orientation
� is represented by g(cG(�, v)). Throughout the paper, we assume that g is a fixed function, and can be evaluated in
constant time; for a nonnegative real x, the value of g(x) is obtained in O (1) time. In this setting, we focus on the following
types of functions as typical examples of g: convex, concave, and step functions. A function g is convex or a convex function
if g(αx1 + (1 −α)x2) ≤ αg(x1) + (1 −α)g(x2) for any x1, x2, and α satisfying 0 ≤ α ≤ 1. Similarly, a function g is concave or
a concave function if g(αx1 + (1 − α)x2) ≥ αg(x1) + (1 − α)g(x2) for any x1, x2, and α satisfying 0 ≤ α ≤ 1. Also, a function
g is a step function if it can be written as g(x) = ∑k

i=0 αiχAi (x), where k ≥ 0, αi ’s are real numbers, Ai ’s are intervals, and
χA is the indicator function of an interval A such that χA(x) = 1 if x ∈ A, and χA(x) = 0 otherwise. We say that a penalty
function p is linearly separable with a convex (concave, or step) function (g) if p is linearly separable and the separated penalty
function of p is a convex (concave, or step) function (g). If the penalty function p of MPDCOp is linearly separable with a
(convex, concave, or step) function (g), we simply indicate it by writing “MPDCOp with a (convex, concave, or step) function
(g).”

An algorithm for MPDCOp is an α-approximation algorithm, or its approximation ratio is α, if it holds that p(cG(�))/

p(cG(�∗)) ≤ α for any input graph G , where � and �∗ are orientations obtained by the algorithm and an optimal algo-
rithm, respectively. Then, an algorithm for MPDCOp is a polynomial-time approximation scheme (PTAS) if it takes a parameter
ε and a graph G as input, then outputs an orientation � such that p(cG(�))/p(cG (�∗)) ≤ 1 + ε with running time which
is polynomial in n and m for a fixed ε . Also, an algorithm for MPDCOp is a fixed parameter tractable (FPT) algorithm param-
eterized by a parameter if it runs in O (f (k) · p(n, m)) time, where f (k) is a function only depending on the size k of the
parameter and p(n, m) is polynomial in n and m.

1.2. Summary of results

In this paper, we study the relationship between the computational complexity of MPDCOp and linearly separable penalty
functions. Clearly, the nature of MPDCOp depends on the penalty function p.

The results in this paper are summarized as follows:

• MPDCOp with a convex function g can be solved in O (m1.5 min{log mg(�),m0.5 log � log m}) time (Theorem 2 in
Section 2). Hence, if g is a polynomial function, such as g(x) = xk with a positive constant k, the running time is
O (m1.5 log m).

• MPDCOp with a step (or concave) function has no polynomial-time approximation algorithm whose approximation ratio
is better than

√
2 − o(1) unless P=NP; it is APX-hard (Theorem 1 in Section 1.3).

• For trees, MPDCOp with any function g can be solved in O (n log �) time (Theorem 3 in Section 3.1.1). Also, for some
restricted functions, MPDCOp on trees can be solved in O (n) time (Theorem 4 in Section 3.1.2). This running time is
attainable for any function g as long as basic arithmetic operations can be done in O (1) time; g does not have to be
convex or concave. In addition, for graphs with treewidth τ , MPDCOp with any function can be solved in O (τ 2�2τ+2n)

time (Theorem 9 in Section 3.2). This algorithm is an FPT algorithm parameterized by treewidth plus the maximum
degree. On the other hand, we show W[1]-hardness of MPDCOp with a step (or concave) function parameterized by
treewidth only (Theorem 10 in Section 3.3).

• For the edge-weighted version of MPDCOp with a convex, concave, or step function, there is no polynomial-time ρ(n)-
approximation algorithm, where ρ(n) ≥ 1 is any polynomial-time computable function (Corollary 14 in Section 4.1 and
Corollary 18) in Section 4.3. The inapproximability results are shown based on the strong NP-hardness of the problem
for edge-weighted planar bipartite graphs and the weak NP-harness for edge-weighted stars (Theorem 13 in Section 4.1
and Theorem 17 in Section 4.3).

• For the edge-weighted version of MPDCOp , we extend the polynomial-time algorithm in Sections 3.1 and the FPT algo-
rithm in 3.2 (Theorems 15 and 16 in Section 4.2). In addition, we design polynomial-time (approximation) algorithms
for edge-weighted stars (Theorems 21 and 22 in Section 4.3).

1.3. Related work

Graph orientation itself is a fundamental problem in the area of graph theory and combinatorial optimization. In general,
graph orientation is a problem of finding an orientation to a given undirected graph to meet some given requirement.
Various kinds of requirements such as connectivity, reachability, acyclicity, etc. have been considered [1–3], and in particular,
there is a large literature devoted to graph orientation with degree constraints; see, e.g., Sections 61.1 in [4], 7.4.3 in [5],
and 2.3 in [6].

Many fundamental graph problems such as graph routing, matching, and covering can be formalized as degree-
constrained graph orientations. One of the earliest related results was published in 1953 by Landau [7], who proved a
55

Y. Asahiro, J. Jansson, E. Miyano et al. Theoretical Computer Science 900 (2022) 53–78
necessary and sufficient condition on the sum of the outdegrees of any subset of vertices in a directed complete graph.1

Hakimi [8], Frank and Gyárfás [9], Chrobak and Eppstein [10], and Gabow [11] studied a variant of the degree-constrained
orientation problem in which the goal is to orient as many edges as possible in an undirected graph, subject to the upper
and lower bounds on the outdegree of each vertex (or equivalently, the upper bounds on the indegree and outdegree of each
vertex). In [8], Hakimi gave the necessary and sufficient conditions of graphs that can be oriented so that every outdegree
is at most a given upper bound. These were generalized by Frank and Gyárfás in [9] to a characterization of graphs that can
be oriented so that every outdegree is between given upper and lower bounds.

In [10], Chrobak and Eppstein studied orientations of planar graphs and showed that an orientation with maximum
outdegree 3 as well as an acyclic orientation with maximum outdegree 5 can be obtained in linear time for any planar
graph. In another line of research, Gabow considered the partial orientation problem in [11], which formulates the degree-
constrained orientation problem as an optimization problem. A partial orientation assigns a unique direction to a subset
of the edges, leaving the remaining edges unoriented. Then, the goal is to orient as many edges as possible in the input
undirected graph without breaking the degree constraints. He proved that the partial orientation problem is MAXSNP-hard
and provided an LP-rounding algorithm which achieves approximation ratio 3/4.

In situations where it is impossible to orient the edges of a given graph so that all of the specified degree constraints
are satisfied at the same time, one may still need a reasonably good orientation. MPDCOp resolves this issue by interpreting
the degree constraints as soft constraints that may be violated, and returning an orientation that minimizes the total penalty
charged for the violated constraints. It should be noted that MPDCOp is a natural generalization of several optimization
problems to control the outdegrees of an undirected graph. For example, the Minimum Maximum Outdegree Orientation

problem (MinMaxO for short) is to find an orientation of an input graph G minimizing maxu∈V {d+
G (�, u)} (e.g., [12–15]).

MinMaxO can be used in efficient dynamic data structures for graphs that support fast vertex adjacency queries under a
series of edge operations [16]. Furthermore, MinMaxO is a special case of the Minimum Makespan problem (e.g., [17]). Min-
MaxO can be expressed as MPDCOp with a convex function g(x) =
x for an
 > n, e.g.,
 = 2n (< m) by setting av = bv = 0
for every v ∈ V (G) in the input graph G , which defines the total penalty of an orientation � as p(cG(�)) = ∑n

i=1
cG (�,v) ,
where g(�) = O (m�). As mentioned in the previous section, MPDCOp with a convex function g(x) can be solved in
O (m1.5 min{log(mg(�)), m0.5 log � log m}) time, i.e., MinMaxO can be solved in O (m1.5 min{�, m0.5 log �} log m) time. This
result can be compared to the result that MinMaxO on unweighted graphs can be solved in O (m1.5 log �) time [13].

Finally, we will discuss a related problem called Min W -Heavy and show how the known results for it immediately
imply the APX-hardness of MPDCOp with a step function. For an input undirected graph and a positive number W , the
problem Min W -Heavy is to find an orientation such that the number of vertices of outdegree at least W is minimized
in the resulted directed graph. Min W -Heavy is APX-hard for any fixed W [18]. By a reduction from Min 1-Heavy, the
APX-hardness of MPDCOp with a step function is straightforwardly obtained by letting

g(x) =
{

0 if x = 0 and

1 if x > 0.

Note that the above function g is also a concave function. We observe that the minimum total penalty for MPDCOp with
the above g is obtained by minimizing the number of vertices of outdegree at least one under an orientation, which is
equivalent to solving Min 1-Heavy. Then the APX-hardness of MPDCOp with a step function (or a concave function) follows
directly from the APX-hardness of Min 1-Heavy. It is shown that Min-1-Heavy cannot be approximated within a ratio of
1.3606 unless P = N P [18] based on the lower bound 1.3606 of polynomial-time approximation ratio of Minimum Vertex
Cover [19]. Recently, this lower bound has been increased to

√
2 − o(1) [20,21] and hence we have the following theorem.

Theorem 1. For MPDCOp with a step function or a concave function, there is no polynomial-time algorithm whose approximation ratio
is better than

√
2 − o(1), unless P = N P .

Also note that the problem Min W -Heavy for W ≥ 2 can be viewed as MPDCOp with a step function g such that g(x) = 1
if x ≥ W and g(x) = 0 otherwise.

1.4. Organization of the paper

The remainder of the paper is organized as follows. In Section 2, we present a polynomial-time algorithm for MPDCOp

with convex functions. Section 3 presents a polynomial-time algorithm for trees and an FPT algorithm parameterized by
treewidth plus the maximum degree for MPDCOp with general functions. In Section 4, we consider the edge-weighted
version of the problem. Section 5 discusses further research on the problems and concludes the paper.

1 For an undirected unweighted complete graph G = (V , E) with V = {v1, v2, . . . , vn}, let Vk = {V ′ ⊆ V | |V ′| = k} for 1 ≤ k ≤ n. Also let I(V ′) = {i | vi ∈
V ′} for V ′ ∈ Vk . Then, for V ′ ∈ Vk and any sequence of integers (d1, d2, . . . , dn) such that ∑1≤i≤n di = n(n − 1)/2, it holds that ∑i∈I(V ′) di ≥ k(k − 1)/2 if
and only if there is an orientation � of G such that di = d+

G (�, vi) for 1 ≤ i ≤ n.
56

Y. Asahiro, J. Jansson, E. Miyano et al. Theoretical Computer Science 900 (2022) 53–78
Fig. 2. Network construction in the proof of Theorem 2: (Left) An undirected graph G; (Right) the network N constructed from G .

2. Polynomial-time algorithms for convex functions

In this section, we present a simple approach to solve MPDCOp with a convex function g . For simplicity, MPDCOconvex

represents this variant of the problem. The approach is based on the reduction to the Convex Cost Flow problem (CCF for
short). Using a strongly polynomial-time algorithm for CCF, the approach for MPDCOconvex runs in O (m1.5 min{log(mg(�)),

m0.5 log � log m}) time.
In general, a network flow problem is the problem of finding some optimal flow on a given network that satisfies

capacity constraints on arcs (directed edges) and supply/demand conditions on vertices, and many types of network flow
problems are intensively and extensively studied. See [22]. Among them, CCF is an optimization problem on a network in
which each arc is associated with a convex function whose variable is flow through the arc. The cost of flow is the total
sum of flow costs on the arcs, and the convex cost flow problem is the problem of finding a flow whose cost is minimum.
If the convex functions are just linear functions, the problem is simply called the Minimum Cost Flow problem, which is a
well studied problem. It is known that CCF can be solved in O (N M log(N2/M) log(NU)) time, where N , M and U are the
number of vertices, the number of edges, and the largest magnitude of the lower and upper bounds on capacities in the
network, respectively [23]. Fortunately, our problem belongs to a relatively smaller class of the flow problems; the capacity
of every arc is integral. For this class, faster algorithms by [22] and [24] can be applied, which yields the next theorem.

Theorem 2. MPDCOconvex can be solved in O (m1.5 min{log(mg(�)), m0.5 log � log m}) time.

Proof. From graph G = (V , E), sequence of 2n integers (a1, a2, . . . , an) and (b1, b2, . . . , bn), and convex function g , we
construct the following network N = (VN , EN):

VN = V ∪ E ∪ {s, t} and

EN =
⋃

e={u,v}∈E

{(s, e), (e, u), (e, v)} ∪ Et,

where Et = ⋃
v∈V {(v, t)}. The capacity of an arc (v, t) in Et is defined by cap((v, t)) = dG (v), and those of the other arcs

are 1. The supply of source s and the demand of sink t are set to be m. See Fig. 2 as an example of this construction. In
Fig. 2, the dotted arcs represent Et .

For this network, a flow of N is a function f : EN → R+ , where R+ is the set of nonnegative real numbers, which
satisfies the following three conditions.

• f ((i, j)) ≤ cap((i, j)) for (i, j) ∈ EN ,
• ∑

(u,i)∈EN f ((u, i)) = ∑
(j,u)∈EN f ((j, u)) for u ∈ VN \ {s, t}, and

• ∑
(s,i)∈EN f ((s, i)) = m and

∑
(i,t)∈EN f ((i, t)) = m.

We define the cost function of an arc (v, t) ∈ Et as

cost(v,t)(x) =

⎧⎪⎨
⎪⎩

g(av − x) if 0 ≤ x < av ,

0 if av ≤ x ≤ bv , and

g(x − bv) if x > bv ,

where x is the amount of flow on this arc. For any other arc (i, j), cost(i, j)(x) = 0 for any x. Note that the cost functions are
all convex under the assumption g is a convex function with g(0) = 0. See Fig. 3 for an example of g(x) and cost(v,t)(x).
57

Y. Asahiro, J. Jansson, E. Miyano et al. Theoretical Computer Science 900 (2022) 53–78
Fig. 3. Example of cost(v,t)(x): av = 3, bv = 5, and g(x) = x2.

Here, we can see that if f is an integral flow, it can be regarded as an orientation of G . In fact, in any feasible in-
tegral flow of N , for any e = {u, v} ∈ E , exactly one of the following cases holds: f ((e, u)) = 1 and f ((e, v)) = 0, or
f ((e, u)) = 0 and f ((e, v)) = 1, which can be interpreted as an orientation (u, v) or (v, u) of e, respectively. Then, f ((v, t))
corresponds to the outdegree of v , which implies that cost(v,t)(f ((v, t))) is the penalty on v under the orientation, and
hence

∑
v∈V cost(v,t)(f ((v, t))) = ∑

(i, j)∈EN cost(i, j)(f ((i, j))) is the total penalty of the orientation. Therefore, our problem
is to find an integral flow that minimizes

∑
(i, j)∈EN cost(i, j)(f ((i, j))), which is CCF with integral constraints.

Since it is known that CCF with integral capacities has an integral optimal flow [24], the integral constraints can be
removed. Then, we can utilize algorithms in [24] and [22]: Let N and M be the number of vertices and the number of
edges in the network, respectively. Also, U and C respectively denote the largest magnitude of the lower and upper bounds
on capacities of an arc and the largest magnitude of a cost on an arc in the network. The running time of the first algorithm
in [24] is O (min{

√
M̃, N2/3U 1/3}M̃ log(NC)) time, where M̃ is the total capacity of edges. In our reduction, N = O (m),

M = O (m), U = �, M̃ = O (m), and C is the largest penalty on a vertex, i.e., g(�) since g(0) = 0 and g is convex. Hence this
algorithm runs in O (m1.5 log(mg(�))) time. The running time of the second algorithm in [22] is O (M log U (M + N log N))

corresponding to O (m2 log� log m) for our setting, which is smaller than the first one when g(�) is very large, e.g., g(�) ≥
2m . Consequently, we can solve MPDCOconvex in O (m1.5 min{log(mg(�)),m0.5 log � log m}) time. �

According to this theorem, the problem can be solved in O (m1.5 log m) time for natural polynomial penalty functions,
such as g(x) = xk with a constant k, since g(�) ≤ �k = O (mk) for this function g .

Remark 1. This reduction is also available for hypergraph orientation. A hypergraph H = (V , H) is an extension of or-
dinary graphs, in which each hyperedge e ∈ H can have more than two vertices. An orientation � of a hypergraph
is an assignment of a hyperedge e to a vertex in e, which is a generalization of graph orientation [6]. The reduc-
tion in the proof of Theorem 2 also works for hypergraphs, and achieves essentially the same time complexity, i.e.,
O (m1.5 min{log(mg(�̃)), m0.5 log �̃ log m}), where �̃ = maxv∈V {|{e | v ∈ e}|}.

3. General penalty setting for graphs with bounded treewidth

As seen in Sec. 1.3, MPDCOp with a function g is APX-hard for general graphs if g is a step function or a concave func-
tion, although if g is a convex function, the problem can be solved in polynomial time as in Section 2. In this section, we
restrict our attention to graphs with bounded treewidth. In Section 3.1, we first propose an O (n log �)-time algorithm that
solves MPDCOp with any functions on trees for general functions (Section 3.1.1), and then propose an O (n)-time algorithm
for restricted functions (Section 3.1.2). Then, in Section 3.2, we design an FPT algorithm parameterized by treewidth plus
the maximum degree, which also solves MPDCOp with any functions. Finally, in Section 3.3, we show that MPDCOp pa-
rameterized by treewidth is W[1]-hard for a step (or concave) function, i.e., it seems difficult to design any FPT algorithm
parameterized by treewidth only.

3.1. Polynomial-time algorithm for trees

3.1.1. O (n log �)-time algorithm
Our algorithm is based on dynamic programming. To explain the idea, we first introduce some notation. We denote the

optimal value of MPDCOp of a graph G by O P T (G) in the following. For a tree T rooted at a vertex r, we consider a tree
T + s in which a vertex s is attached with r, that is, T + s = (V (T) ∪ {s}, E(T) ∪ {{r, s}}) with rooted at s. In the context of
MPDCOp , s is a virtual vertex for which no penalty is charged in any orientation (or, we assume as = 0 and bs = ∞).

In this setting, we consider two “optimal” orientations of T + s; one is an optimal orientation under the constraint that
{s, r} is oriented as (s, r), and the other is the one under the constraint that {r, s} is oriented as (r, s). We denote the values
of such orientations by q−(T) and q+(T), respectively. That is, these can be represented by
58

Y. Asahiro, J. Jansson, E. Miyano et al. Theoretical Computer Science 900 (2022) 53–78
q−(T) = min
�∈L(T)

⎧⎨
⎩

∑
v∈V (T)

g(cT (�, v))

⎫⎬
⎭ and

q+(T) = min
�∈L(T)

⎧⎨
⎩g(θr(d

+
T (�, r) + 1)) +

∑
v∈V (T)\{r}

g(cT (�, v))

⎫⎬
⎭ ,

where L(T) is the set of orientations of T . Note that q−(T) = O P T (T). Clearly, O P T (T + s) = min{q−(T), q+(T)}.
Now we show a “principle of optimality” equation. Let

L(v,k) = {� | � ∈ L(T),d+
T (�, v) = k},

and Ts be the subtree of T rooted at a vertex s. Then, we have

q−(T) = min
k∈{0,...,dT (r)}

{
min

�∈L(r,k)
{g(θr(k)) + q(T ,k)}

}
and

q+(T) = min
k∈{0,...,dT (r)}

{
min

�∈L(r,k)
{g(θr(k + 1)) + q(T ,k)}

}
,

where

q(T ,k) = min
N ′⊆NT (r)
|N ′|=k

⎧⎨
⎩

∑
s∈N ′

q−(Ts) +
∑

s∈NT (r)\N ′
q+(Ts)

⎫⎬
⎭ .

Here q(T , k) is the minimum total penalty among all orientations of T , ignoring the cost on r under the constraint that
d+

T (�, r) = k.
The values g(θr(k)) and g(θr(k + 1)) depend only on k (they do not depend how T is oriented). Hence, q−(T) and q+(T)

are transformed to

q−(T) = min
k∈{0,...,dT (r)}

{
g(θr(k)) + min

�∈L(r,k)
{q(T ,k)}

}
and

q+(T) = min
k∈{0,...,dT (r)}

{
g(θr(k + 1)) + min

�∈L(r,k)
{q(T ,k)}

}
.

Also, the condition � ∈ L(r, k) is implied by the definition of q(T , k), in which the two conditions N ′ ⊆ NT (r) and
|N ′| = k are satisfied, edges {r, v}’s for v ∈ N ′ are oriented towards v , and all other edges incident to r are oriented towards
r. Therefore, min�∈L(r,k){q(T , k)} is transformed to just q(T , k) without “min�∈L(r,k) .” Hence q−(T) and q+(T) are simplified
to

q−(T) = min
k∈{0,...,dT (r)}

{g(θr(k)) + q(T ,k)} and (1)

q+(T) = min
k∈{0,...,dT (r)}

{g(θr(k + 1)) + q(T ,k)} . (2)

In addition, q(T , k) can be rewritten as

q(T ,k) =
∑

s∈NT (r)

q+(Ts) + min
N ′⊆NT (r)
|N ′|=k

{∑
s∈N ′

h(Ts)

}
, (3)

where h(Ts) = q−(Ts) − q+(Ts). Namely, q−(T) and q+(T) can be essentially computed by (dT (r) + 1)-times evaluation of

h̃(T ,k)
def= min

N ′⊆NT (r)
|N ′|=k

{∑
s∈N ′

h(Ts)

}
. (4)

Without loss of generality, let NT (r) = {v1, . . . , vd}, I = {1, . . . , d}, and h′
i = h(T vi) for i ∈ I , where d = dT (r) for simplicity.

By sorting h′
i ’s, we can obtain a list h′

i1
, h′

i2
, . . . , h′

id
such that h′

i1
≤ h′

i2
≤ · · · ≤ h′

id
and i j ∈ I for j ∈ {1, . . . , d}. Then, it holds

that

h̃(T ,k) =
k∑

h′
i j
. (5)
j=1

59

Y. Asahiro, J. Jansson, E. Miyano et al. Theoretical Computer Science 900 (2022) 53–78
Based on these ideas, we can compute q−(T) and q+(T) of T rooted at r from the values of q−(Ts) and q+(Ts) for
s ∈ NT (r) as follows: Let Q = ∑

s∈NT (r) q+(Ts) which is the first term of the right hand side of (3). The same value Q is
used to compute q(T , k) for every k. Thus, we compute Q in O (dT (r)) time only once. Then, we compute h(Ts) for each
s ∈ NT (r) in O (dT (r)) time, and construct a list L of h(Ts)’s, whose length is dT (r). Spending O (dT (r) log dT (r)) time, L is
sorted, say, by the merge sort. After that, based on the value

∑
s∈NT (r) q+(Ts) and the sorted list L, we obtain q−(T) and

q+(T) for each k ∈ {0, . . . , dT (r)} by the following procedure.

1. Compute Q and construct the sorted list L. This step takes O (dT (r)) + O (dT (r) log dT (r)) = O (dT (r) log dT (r)) time as
described above.

2. Let k = 0 and hk = 0 which corresponds to h̃(T , 0). This step takes constant time.
3. If k ≥ 1, add the kth value in L to hk , which obtains h̃(T , k) based on (5). This step takes constant time.
4. Compute q(T , k) = Q + hk in constant time by the equation (3), based on Q and hk .
5. Compute g(θr(k)) + q(T , k) and g(θr(k + 1)) + q(T , k).
6. If k < dT (r), then let k = k + 1 and go back to Step 3. Otherwise, i.e., if k = dT (r), then halt. This step also takes constant

time.

In the above, each of Steps 2 through 6 spends constant time only for each k ∈ {0, . . . , dT (r)}. Hence, in total, we need
O (dT (r) log dT (r)) time to obtain the values g(θr(k)) + q(T , k) and g(θr(k + 1)) + q(T , k) for every k. After that, we need to
take the minimum from those O (dT (r)) values in (1) and (2), which takes O (dT (r)) time.

In summary, q−(T) and q+(T) can be computed in O (dT (r) log dT (r)) time, provided q−(Ts) and q+(Ts) for every s ∈
NT (r). Thus, for an input tree G , q+(G) and q−(G)(= O P T (G)) are obtained by the bottom up manner and the total running
time is

∑
v∈V (G)

O (dG(v) log dG(v)) = O (n log�). (6)

Finally we have the following theorem.

Theorem 3. For any linearly separable penalty function, MPDCOp can be solved in O (n log�) time when the input graph is a tree.

Remark 2. The above O (n log �)-time algorithm works for any rational-valued penalty function as long as basic arithmetic
operations can be done in O (1) time; it is not necessary for g to be monotone or to satisfy g(0) = 0.

3.1.2. O (n)-time algorithm for restricted functions
In this section, we show that the running time of the algorithm in the previous section can be reduced if the sep-

arated penalty function has some special property. An important observation is that we do not need to check every
k ∈ {0, . . . , dT (r)} in (1) and (2) for such functions. We continue to use the symbols used in the previous section.

Consider a step function g such that g(0) = 0 and g(x) = c for x > 0 with some positive constant c. The shape of this
function g is drawn by only one segment g(x) = c with a point g(0) = 0. Namely, it can be written as g(x) = ∑1

i=0 αiχAi (x)
such that α0 = 0, α1 = c, A0 = [0, 0], and A1 = (0, �], where χA is the indicator function of an interval A such that
χA(x) = 1 if x ∈ A and χA(x) = 0 otherwise. Note that the domain of the separated penalty functions is [0, �]. In general, a
step function can be written as g(x) = ∑k

i=0 αiχAi (x) for some αi ’s and Ai ’s. As for convex and concave functions, some of
them are piecewise linear functions. Namely, a convex or a concave function can be written as g(x) = ∑k

i=0(αi x +βi)χAi (x),
where αi x +βi is a linear function with constants αi and βi , defined on an interval Ai . In this section, we consider functions
such that the number k of intervals is a constant. We call such function a function with constant intervals.

Let us consider the case that separated penalty function is a step function g such that g(0) = 0 and g(x) = c for x > 0
with some positive constant c. Let L and R be the largest indices such that h′

iL
< 0 and h′

iR
≤ 0, respectively, i.e., h′

iL+1
, . . . , h′

iR

are all 0. Thus, it holds that mink∈{0,...,dT (r)}{h̃(T , k)} = h̃(T , L) = h̃(T , L + 1) = · · · = h̃(T , R). Moreover, h̃(T , k) is decreasing
when k ≤ L and increasing when k ≥ R . If h′

i1
> 0, we let L = R = 0. In below, we show that the equations (1) and (2) in the

previous section can be simplified for such a function g , which leads to the linear-time algorithm.
We consider two cases (Case 1) [a, b] ∩[L, R] = ∅, and (Case 2) [a, b] ∩[L, R] = ∅, where [x, y] represents a closed interval

between x and y. Note that a, b, L, and R are all integers between 0 and �.

Case 1 [a, b] ∩ [L, R] = ∅:
See Fig. 4-(Left) for an example. Let κ be the smallest integer in [a, b] ∩ [L, R]. Then, since θr(κ) = 0 implying that
g(θr(κ)) = 0 and h̃(T , κ) is the minimum, it holds that

q−(T) = min {g(θr(k)) + q(T ,k)} = Q + h̃(T , κ).

k∈{0,...,dT (r)}

60

Y. Asahiro, J. Jansson, E. Miyano et al. Theoretical Computer Science 900 (2022) 53–78
Fig. 4. Computation of q−(T) and q+(T): (Left) [a, b] ∩ [L, R] = ∅. According to the definition of κ , we have κ = L in this example. (Right) [a, b] ∩ [L, R] = ∅.

For q+(T), we combine g(θr(k + 1)) and q(T , k) in (2). Even if q(T , κ) takes the minimum, it may happen
g(θr(κ +1)) = c when κ = b. However, in this case, k = κ −1 is the only other possibility which gives the minimum
based on the property of h̃(T , k) mentioned in the above. Therefore we can obtain q+(T) as follows.

q+(T) = min
k∈{0,...,dT (r)}

{g(θr(k + 1)) + q(T ,k)}

= min{g(θr(κ + 1)) + Q + h̃(T , κ), g(θr(κ)) + Q + h̃(T , κ − 1)}.
Case 2 [a, b] ∩ [L, R] = ∅:

See Fig. 4-(Right) for an example. Since [a, b] ∩ [L, R] = ∅, either of R ≤ a − 1 or b + 1 ≤ L holds. Assume that
R ≤ a − 1. In this case, g(θr(k)) + q(T , k) takes the minimum when k = a or k = R . (k can be either of L + 1, . . . , R ,
when we only consider q−(T). However we prefer setting k = R for q+(T) in the discussion below.) Hence, we
observe that

q−(T) = min
k∈{0,...,dT (r)}

{g(θr(k)) + q(T ,k)}

= min{c + Q + h̃(T , R), Q + h̃(T ,a)}.
As for q+(T), g(θr(k + 1)) becomes 0 if k = a − 1. Thus, setting k = R may yield g(θr(k + 1)) = 0. This is the reason
that we chose k = R in the above. Hence, we take the minimum among two settings k = R and k = a − 1:

q+(T) = min
k∈{0,...,dT (r)}

{g(θr(k + 1)) + q(T ,k)}

= min{g(θr(R + 1)) + Q + h̃(T , R), Q + h̃(T ,a − 1)}.
Similarly, for the case L ≥ b + 1, we can obtain

q−(T) = min
k∈{0,...,dT (r)}

{g(θr(k)) + q(T ,k)}

= min{c + Q + h̃(T , L), Q + h̃(T ,b)}, and

q+(T) = min
k∈{0,...,dT (r)}

{g(θr(k + 1)) + q(T ,k)}

= min{g(θr(L + 1)) + Q + h̃(T , L), Q + h̃(T ,b − 1)}.
We estimate the running time to compute the above equations for q−(T) and q+(T). By scanning h(T vi)’s once, we

can know L and R as the numbers of h(T vi)’s which are negative or zero. There is an algorithm which can finds the k-th
smallest number in a given list L in O (|L|) time [25] where |L| is the number of elements in the list L. We can utilize this
algorithm to find h′

iL
and h′

iR
in O (dT (r)) time. After we find h′

iL
(or h′

iR
), we can pick h′

i1
through h′

iL
(or h′

iR
) by scanning

h′
i ’s again, breaking ties arbitrarily, in O (dT (r)) time. According to this, for Case 1, we can compute κ in constant time,

h̃(T , κ) and h̃(T , κ − 1) in O (dT (r)) time. Similarly, for Case 2, h̃(T , R), h̃(T , a − 1), h̃(T , L), and h̃(T , b) are all computed in
O (dT (r)) time. Finally, q−(T) and q+(T) are computed in constant time based on these values, where Q is computed only
once in advance spending O (dT (r)) time similarly to the estimation for Theorem 3. In total, we need a constant number of
O (dT (r))-time computations, i.e. q−(T) and q+(T) can be computed in O (dT (r)) time. This implies that the total running
time of the algorithm becomes O (n).

In the above, we only considered a step function having only two segments. When the separated penalty function is a
function with constant intervals, a similar algorithm works. In order to find the minimum for q−(T) and q+(T), we need to
check the points corresponding to endpoints of an interval, and its neighbors based on the observation that

• the sum of a constant (by a step function) and a linear function (by h̃) on an interval is also a linear function,
• the sum of two linear functions (by a convex/concave function and by h̃) on an interval is also a linear function,
61

Y. Asahiro, J. Jansson, E. Miyano et al. Theoretical Computer Science 900 (2022) 53–78
and hence a minimum value appears at either end of the interval. Then, since the number of intervals is a constant, the total
number of candidates is also a constant for each of the above equations. This increases the total running time by a constant
number of O (dT (r))-computations, which is still O (dT (r)). Therefore, an optimal solution is obtained in

∑
vi∈V dt(r) = O (n)

time for such functions with constant intervals.

Theorem 4. If the separated penalty function is a function with constant intervals, MPDCOp can be solved in O (n) time when the input
graph is a tree.

3.2. FPT algorithm parameterized by treewidth and the maximum degree

In this section, we propose an FPT algorithm parameterized by treewidth plus the maximum degree for any linearly
separable penalty functions.

3.2.1. Overview and notation
Intuitively, the treewidth is a measure of the tree-likeness of a graph. A tree decomposition of a graph G = (V , E) is a pair

(T , X), where T is a tree with node set I and X = {Xi ⊆ V | i ∈ I}, with the following three properties [26,27].

(i)
⋃

i∈I Xi = V .
(ii) For every {u, w} ∈ E , there exists an i ∈ I satisfying {u, w} ⊆ Xi .

(iii) For all i1, i2, i3 ∈ I , if i2 is on the path between i1 and i3 in T , then Xi1 ∩ Xi3 ⊆ Xi2 .

The width of a tree decomposition (T , {Xi | i ∈ I}) is defined by maxi∈I {|Xi| − 1}. The treewidth τ (G) of G is the minimum
width over all tree decompositions of G . A tree decomposition of G with minimum width t can be obtained in O (t O (t3)n)

time [28]. A tree decomposition (T , {Xi | i ∈ I}) is a nice tree decomposition with introduce-edge nodes if it satisfies four more
conditions in the following [29–31].

(iv) The tree decomposition is rooted at a node r ∈ I such that Xr = ∅.
(v) Every node in I has at most two children.

(vi) For every edge in E , there is exactly one introduce-edge node (defined in the next condition (vii)) in T .
(vii) Each node i ∈ I belongs to one of the following five types:

• Leaf node: it has no children and Xi = ∅;
• Introduce-vertex node: it has exactly one child j ∈ I with Xi = X j ∪ {v} for a vertex v ∈ V ;
• Forget node: it has exactly one child j ∈ I with Xi = X j \ {v} for a vertex v ∈ V ;
• Introduce-edge node: it has exactly one child j ∈ I and is labeled with an edge {u, v} ∈ E such that {u, v} ⊆ Xi and

Xi = X j ; and
• Join node: it has exactly two children j and j′ such that Xi = X j = X j′ .

In this paper, we simply say that a tree decomposition is nice if it is a nice tree decomposition with introduce-edge nodes.
A tree decomposition of width τ for a graph having n vertices can be transformed to a nice tree decomposition with O (τn)

nodes and width τ in O (τ 2 max{|I|, n}) time [31]. Thus we assume that a tree decomposition is nice and has O (τn) nodes
in the following. Also, we can assume that if Xi = ∅ for a node i, then i is either a leaf or the root r, because otherwise the
input graph G is disconnected, and the algorithm in this section can be applied to each connected component.

We assume that for an input graph G , a nice tree decomposition (T , X) of width τ is given, where the node set of T is
I , T is rooted at a node r ∈ I , and X = {Xi | i ∈ I}. For a node i of T , let T [i] denote the subtree of T induced by i and all
descendants of i. Also, we define a partition {Ei | i ∈ I} of E according to Xi ’s, which is always possible due to property (vi):
Ei is the set of all edges introduced in node i.

Now we design a dynamic programming algorithm (DP for short) that runs from leaves of T to the root r. Since each
subtree of the form T [i] corresponds to a subgraph of G , we let G[i] be the subgraph whose vertex set is

⋃
j∈V (T [i]) Xi and

edge set is
⋃

j∈V (T [i]) E j . The DP computes the optimal penalty of G[i] from the optimal penalty of subgraph(s) defined by
its child(ren).

For simplicity, we assume that V (G) = {1, 2, . . . , n} in the following. Consider a subset Xi of V (G) such that Xi =
{i1, i2, . . . , i|Xi |} and i1 < i2 < · · · < i|Xi | . Let D(G, Xi) be a set of all vectors (d1, d2, . . . , d|Xi |) such that each dh is a non-
negative integer satisfying 0 ≤ dh ≤ dG (ih) for 1 ≤ h ≤ |Xi | (recall that dG (ih) is the degree of the vertex ih in G). That
is, D(G, Xi) is a set of |Xi |-dimensional vectors representing sequence of (possible) outdegrees of vertices in Xi . Such a
vector d ∈ D(G, Xi) is called an outdegree vector for i, and dk represents the k-th component of d. As in the definition of
the nice tree decomposition, Xi is allowed to be an empty set, and we define D(G, ∅) = {()}, where “()” represents a zero
dimensional vector. Since |Xi | ≤ τ + 1 and each dh is at most �, the size |D(G, Xi)| of D(G, Xi) is O (�τ+1).

Assume Xi = {i1, i2, . . . , i|Xi |} ⊆ V (G) such that i1 < i2 < · · · < i|Xi | . For the graph G[i] and an outdegree vector d for
i, we define a function O P T (i, d) which represents the optimal (minimum) penalty of an orientation of G[i] under the
constraint that the sequence of the outdegrees of every vertex ih ∈ Xi in the resulting orientation is dh . Namely, O P T (i, d)

for a non-leaf node i is defined as
62

Y. Asahiro, J. Jansson, E. Miyano et al. Theoretical Computer Science 900 (2022) 53–78
Fig. 5. Illustrating a node of type introduce-vertex node: (Left) A graph G[j] and an orientation of G[j]; (Right) A graph G[i] in which the vertex ik is
introduced, and an orientation of G[i].

O P T (i,d) =
{

min�∈L(i,d){p(cG[i](�))} if L(i,d) = ∅, and

+∞ otherwise,
(7)

where L(i, d) = {� | � is an orientation of G[i], d+
G[i](�, ih) = dh for 1 ≤ h ≤ |Xi |}. We say that an orientation � ∈ L(i, d)

follows d. In case i is a leaf node, we define O P T (i, ()) = 0. Thus, mind∈D(G,Xi){O P T (i, d)} is the optimal penalty of MPDCOp

for G[i], and then the optimal penalty for G is mind∈D(G[r],Xr){O P T (r, d)} = O P T (r, ()), where G[r] = G and Xr = ∅. We
show that O P T (i, d) can be computed from the information on i’s child(ren) according to the type of i as follows. In the
following subsections, we consider four cases, each of which corresponds to a type of a node in (vii) (except for leaf nodes)
of the definition of the nice tree decomposition.

3.2.2. Introduce-vertex node
Let i be an introduce-vertex node. Without loss of generality, assume that

• j is the child of i,
• X j = { j1, j2, . . . , j|X j |} such that j1 < j2 < · · · < j|X j | ,• A vertex ik is introduced in i for some ik ∈ V , i.e., Xi = X j ∪ {ik}, and
• Xi = {i1, i2, . . . , ik−1, ik, ik+1, . . . , i|Xi |} such that i1 < i2 < · · · < i|Xi | , ih = jh for 1 ≤ h ≤ k − 1, and ih+1 = jh for k ≤ h ≤

|X j|.

If j is a leaf node, i.e., ik is the only vertex in G[i] having no edges, then we set

O P T (i, (0)) = 0,

which takes constant time. For 1 ≤ h ≤ dG(ik), we set

O P T (i, (h)) = +∞,

which also takes constant time for each h, since we can not orient any edge in G[i] and so the outdegree of ik must be
zero.

Suppose that j is not a leaf node. Since the vertex ik is introduced as an isolated vertex, an optimal orientation of G[j]
can be also used as an optimal orientation for the part G[j] in G[i]. Namely, an optimal orientation of G[i] is the same as
an optimal orientation of G[j]. See Fig. 5. Thus, for outdegree vectors i for i and j for j, if ih = jh for 1 ≤ h ≤ k − 1, ik = 0,
and ih = jh−1 for k + 1 ≤ h ≤ |Xi | hold, then we set

O P T (i, i) = O P T (j, j),

considering that an optimal orientation for G[j] is also applied to the part G[j] in G[i]. For each i ∈ D(G, Xi), it takes
O (τ) time to obtain an outdegree vector j which satisfies the condition if it exists, since |Xi | ≤ τ + 1 and so i is an
O (τ)-dimensional vector. If such an outdegree vector j for j does not exist, then we set

O P T (i, i) = +∞,

meaning that such an orientation following the outdegree vector i does not exist. Thus, it takes O (τ) time for the case j is
not a leaf node.

Since |D(G, Xi)| = O (�τ+1) and it takes O (τ) time for each case, the recursive formula for an introduce-vertex node i
can be computed in O (τ�τ+1) time in total:
63

Y. Asahiro, J. Jansson, E. Miyano et al. Theoretical Computer Science 900 (2022) 53–78
Fig. 6. Illustrating a node of type forget node: (Left) A graph G[j] and an orientation of G[j]; (Right) A graph G[i] constructed by removing the vertex jk ,
and an orientation of G[i].

Claim 5. For an introduce-vertex node i whose child is j and i ∈ D(G, Xi),

O P T (i, i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0

if j is a leaf node and i = (0),

O P T (j, j)

if j is not a leaf node, ih = jh for 1 ≤ h ≤ k − 1, ik = 0,

and ih = jh−1 for k + 1 ≤ h ≤ |Xi|, and

+∞
otherwise,

(8)

which can be computed in O (τ) time. Hence we spend O (τ�τ+1) time for each introduce-vertex node i. �
3.2.3. Forget node

Let i be a forget node. Without loss of generality, assume that

• j is the child of i,
• X j = { j1, j2, . . . , j|X j |} such that j1 < j2 < · · · < j|X j | , and
• A vertex jk is removed from j for some k such that 1 ≤ k ≤ |X j |, i.e., Xi = X j \ { jk}.

Note that j must be a non-leaf node with X j = ∅, since i removes a vertex jk from X j . The set Xi may be empty for
the case i is the root node r. If Xi = ∅, then it must hold that i = () and j is a node including only one vertex j1. Then the
outdegree of the vertex j1 in G[i] can be any value between 0 and dG (j1). Hence we take the minimum among penalties
of orientations of G[j] following an outdegree vector (h) for 0 ≤ h ≤ dG (j1) in this case:

O P T (i, ()) = min
0≤h≤dG (j1)

{O P T (j, (h))},
which takes O (dG (j1)) = O (�) time with checking whether Xi = ∅ and i = () in constant time. If X = ∅ but i = (), then we
set

O P T (i, i) = +∞,

which takes constant time.
Assume that Xi = ∅. Consider outdegree vectors i for i and j for j, and an optimal orientation of G[i] which follows i.

Suppose that ih = jh for 1 ≤ h ≤ k − 1 and ih = jh+1 for k ≤ h ≤ |Xi | hold. Then if we use an orientation of G[j] following j
as an orientation of G[i], it follows i. Under such an orientation of G[j], the outdegree of the vertex jk in G[i] can be any
value between 0 and dG (jk). See Fig. 6. Let Jk(i) be a set of |X j |-dimensional vector j’s such that jh = ih for 1 ≤ h ≤ k − 1,
jh = ih−1 for k + 1 ≤ h ≤ |X j |, and 0 ≤ jk ≤ dG(jk). We take the minimum among penalties of such orientations following i
if Jk(i) = ∅:

O P T (i, i) = min
j∈ Jk(i)

{O P T (j, j)}.
Since jk is at most � and i is an O (τ)-dimensional vector, | Jk(i)| = O (�) and Jk(i) can be obtained in O (τ�) time. Taking
the minimum spends O (�) time, as a result, this can be computed in O (τ�) time. If Xi = ∅ but Jk(i) = ∅, we set

O P T (i, i) = +∞,

which takes constant time.
Since |D(G, Xi)| = O (�τ+1) and it takes O (τ�) time for each case, the recursive formula for a forget node i can be

computed in O (τ�τ+2) time in total:
64

Y. Asahiro, J. Jansson, E. Miyano et al. Theoretical Computer Science 900 (2022) 53–78
Fig. 7. Illustrating a node of type introduce-edge node: (Left) A graph G[j] and an orientation of G[j]; (Right) A graph G[i] constructed by inserting an edge
{ik, ik′ }, and an orientation of G[i] in which the edge {ik, ik′ } is oriented as (ik, ik′).

Claim 6. For a forget node i whose child is j and i ∈ D(G, Xi),

O P T (i, i) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min0≤h≤dG (j1){O P T (j, (h))} if Xi = ∅ and i = (),

min j∈ Jk(i){O P T (j, j)} if Xi = ∅ and Jk(i) = ∅, and

+∞ otherwise,

(9)

where Jk(i) is a set of |X j |-dimensional vector j’s such that jh = ih for 1 ≤ h ≤ k − 1, jh = ih−1 for k + 1 ≤ h ≤ |X j |, and 0 ≤ jk ≤
dG (jk). The above recursive formula can be computed in O (τ�) time for each i, and hence the total time required for a forget node i is
O (τ�τ+2). �
3.2.4. Introduce-edge node

Let i be an introduce-edge node. Without loss of generality, assume that

• j is the child of i,
• Xi = X j = {i1, i2, . . . , i|Xi |}, and
• An edge {ik, ik′ } is introduced in i for some k and k′ such that k = k′ and {k, k′} ⊆ {1, 2, . . . , |Xi |}.

See Fig. 7. The edge {ik, ik′ } is oriented in either way (ik, ik′) or (ik′ , ik) in an orientation. In the former case, the outdegree
of ik increases by one. Similarly, in the latter case, the outdegree of ik′ is increased by one. In both cases, outdegrees of
other vertices do not change. Suppose that we construct an orientation �i of G[i] by adding (ik, ik′) to an orientation � j of
G[j]. Then if �i and � j respectively follow outdegree vectors i and j, then it holds that ik = jk + 1 and ih = jh for h = k.
If we add (ik′ , ik) to � j instead of (ik, ik′), then it holds that ik′ = jk′ + 1 and ih = jh for h = k′ . An important thing here
is that the increment of the outdegree of the vertex ik (or ik′) increases the penalty on ik (or ik′) from g(θik (ik − 1)) to
g(θik (ik)) (or from g(θik′ (ik′ − 1)) to g(θik′ (ik′))). Penalties on other vertices do not change.

Let i(k) be an |Xi |-dimensional vector such that i(k)
k = ik − 1 and i(k)

h = ih for h = k. Similarly let i(k′) be an |Xi |-
dimensional vector such that i(k′)

k′ = ik′ − 1 and i(k′)
h = ih for h = k′ . Since |Xi | ≤ τ + 1, obtaining i(k) and i(k′) takes O (τ)

time. Here, i(k) and/or i(k′) may not belong to D(G, X j), e.g., if ik = 0, then i(k)
k = −1 and hence i(k) /∈ D(G, X j). Thus,

by checking whether ik and ik′ are positive in constant time, we can know whether i(k) and i(k′) belong to D(G, X j). If
i(k) ∈ D(G, X j) but i(k′) /∈ D(G, X j), then the edge {ik, ik′ } can be oriented only as (ik, ik′). Thus, we set

O P T (i, i) = O P T (j, i(k)) − g(θik (ik − 1)) + g(θik (ik)), (10)

which takes constant time assuming i(k) is given. Similarly, if i(k) /∈ D(G, X j) but i(k′) ∈ D(G, X j), then we set

O P T (i, i) = O P T (j, i(k′)) − g(θik′ (i′k − 1)) + g(θik′ (i′k)), (11)

which again takes constant time assuming i(k′) is given. In the case that both of i(k) and i(k′) belong to D(G, X j), we need
to take the minimum of penalties of the two orientations in which the edge {ik, ik′ } is oriented either way (ik, ik′) or (ik′ , ik).
Namely, we set

O P T (i, i) = min{O P T (j, i(k)) − g(θik (ik − 1)) + g(θik (ik)), O P T (j, i(k′)) − g(θik′ (ik′ − 1)) + g(θik′ (ik′))}, (12)

which also takes constant time assuming i(k) and i(k′) are given. Note that the above equations (10), (11), and (12) can be
computed depending on ik and ik′ , since the penalty function p is linearly separable with a function g .

Since |D(G, Xi)| = O (�τ+1) and it takes O (τ) time for each case, the recursive formula for an introduce-edge node i
can be computed in O (τ�τ+1) time in total:
65

Y. Asahiro, J. Jansson, E. Miyano et al. Theoretical Computer Science 900 (2022) 53–78
Fig. 8. Illustrating a node of type join node: (Left) A graph G[j] and an orientation � j of G[j]; (Center) A graph G[j′] and an orientation � j′ of G[j′];
(Right) A graph G[i] which merges G[j] and G[j′], and an orientation of G[i] constructed from � j and � j′ .

Claim 7. For an introduce-edge node i whose child is j and i ∈ D(G, Xi),

O P T (i, i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

O P T (j, i(k)) − g(θik (ik − 1)) + g(θik (ik))

if ik ≥ 1 and ik′ = 0,

O P T (j, i(k′)) − g(θik′ (ik′ − 1)) + g(θik′ (ik′))

if ik = 0 and ik′ ≥ 1,

min{O P T (j, i(k)) − g(θik (ik − 1)) + g(θik (ik)),

O P T (j, i(k′)) − g(θik′ (ik′ − 1)) + g(θik′ (ik′))}
if ik ≥ 1 and ik′ ≥ 1, and

+∞
otherwise,

(13)

where i(k) (i(k′) , resp.) is an |Xi|-dimensional vector such that i(k)
k = ik − 1 and i(k)

h = ih for h = k (i(k′)
k′ = ik′ − 1 and i(k′)

h = ih
for h = k′ , resp.). The above recursive formula can be computed in O (τ) time for each i, and hence the total time required for an
introduce-edge node i is O (τ�τ+1). �
3.2.5. Join node

Let i be a join node. Without loss of generality, assume that

• j and j′ are the children of i and
• Xi = X j = X j′ = {i1, i2, . . . , i|Xi |}.

Since E(G[j]) and E(G[j′]) are disjoint, we can construct an orientation �i of G[i] by combining an orientation � j of
G[j] with an orientation � j′ of G[j′]. See Fig. 8. Under the resulting orientation �i of G[i], it holds that d+

G[i](�i, ih) =
d+

G[j](� j, ih) + d+
G[j′](� j′ , ih). Thus, if �i , � j , and � j′ respectively follow outdegree vectors i, j, and j′ , then it holds that

ih = jh + j′h for 1 ≤ h ≤ |Xi |. At this moment, the penalty on the vertex ih under �i is g(cG[i](�i, ih)) = g(θih (ih)), while
under � j and � j′ , the penalties on ih are g(cG[j](� j, ih)) = g(θih (jh)) and g(cG[j′](� j′ , ih)) = g(θih (j′h)), respectively.

Let γh(i, j, j′) denote the amount of difference g(θih (ih)) − g(θih (jh)) − g(θih (j′h)), which can be computed in constant
time for a given triple i, j, and j′ . Since there may exist more than one combination of j and j′ satisfying the above
condition, we take the minimum among such pairs of j and j′ . Let P (i) be the set of pairs (j, j′) of two |Xi |-dimensional
vectors j and j′ such that ih = jh + j′h for 1 ≤ h ≤ |Xi |. If P (i) = ∅, we set

O P T (i, i) = min
(j, j′)∈P (i)

{O P T (j, j) + O P T (j′, j′) +
∑

1≤h≤|Xi |
γh(i, j, j′)}.

Since the penalty function p is linearly separable, γh(i, j, j′) can be computed in constant time for each triple i , j, and j′ .
The size |P (i)| of P (i) is at most O (�τ+1), since each ih ≤ � for 1 ≤ h ≤ |Xi | ≤ τ + 1. Then for each pair of (j, j′) ∈ P (i),
the formula (inside “min”) O P T (j, j) + O P T (j′, j′) +∑

1≤h≤|Xi | γh(i, j, j′) can be computed in O (|Xi |) = O (τ) time, where
the most time consuming part is to compute

∑
1≤h≤|Xi | γh(i, j, j′). Hence for an outdegree vector i, it takes O (τ�τ+1) time

to set the above recursive formula. As the remainder of the cases, if P (i) = ∅, then we set

O P T (i, i) = +∞,

which takes constant time.
Since |D(G, Xi)| = O (�τ+1) and it takes O (τ�τ+1) time for each case, the recursive formula for a join node i can be

computed in O (τ�2τ+2) time in total:
66

Y. Asahiro, J. Jansson, E. Miyano et al. Theoretical Computer Science 900 (2022) 53–78
Claim 8. Let i be a join node whose two children are j and j′ . Then, for i ∈ D(G, Xi),

O P T (i, i) =
⎧⎨
⎩

min(j, j′)∈P (i){O P T (j, j) + O P T (j′, j′) + ∑
1≤h≤|Xi | γh(i, j, j′)} if P (i) = ∅ and

+∞ otherwise,
(14)

where P (i) is the set of pairs (j, j′) of two |Xi |-dimensional vectors j and j′ such that ih = jh + j′h for 1 ≤ h ≤ |Xi |, and γh(i, j, j′) =
g(θih (ih)) − g(θih (jh)) − g(θih (j′h)). The above recursive formula can be computed in O (τ�τ+1) time for each i, and hence the total
time required for a join node i is O (τ�2τ+2). �
3.2.6. Running time

The optimal penalty can be obtained by computing O P T (r, ()) in the bottom up manner from leaves to the root r. For
each node i, the recursive formula can be computed in O (τ�2τ+2) time, where the case that i is a join node spends the
longest time. Since the number of nodes in a nice tree decomposition of a graph G with treewidth τ is O (τn), we have the
next theorem.

Theorem 9. For an input graph, suppose that its nice tree decomposition with treewidth τ and O (τn) nodes is given. Then, for any
linearly separable penalty function, MPDCOp can be solved in O (τ 2�2τ+2n) time.

3.3. W[1]-hardness with respect to treewidth

The algorithm presented in the previous section is an FPT algorithm with respect to τ +�, where τ and � are treewidth
and the maximum degree. Then, a new question arises: is it possible to design an FPT algorithm parameterized only by τ?
As we see in this section, the answer is likely “no”; we show that the next theorem, i.e., MPDCOp is W [1]-hard with respect
to τ .

Theorem 10. MPDCOp with a step (or concave) function parameterized by treewidth is W [1]-hard.

We show this theorem by a reduction from k-Multicolor Clique:

Problem: k-Multicolor Clique

Input: A connected undirected graph G = (V [1] ∪ V [2] ∪ · · · ∪ V [k], E), where the vertices of V [i] induce an independent
set for every i, 1 ≤ i ≤ k.

Question: Is there a clique of size k (k-clique) in G?

The problem k-Multicolor Clique is known to be W [1]-hard with respect to the solution (clique) size k [32]. Actually,
the proof utilizes the same graph of the reduction from k-Multicolor Clique to Capacitated Vertex Cover shown in [33],
though we give the detail of the construction of the graph below for completeness.

From an instance G of k-Multicolor Clique, we construct a new graph H , a cost function cH , and a penalty function
p satisfying the followings: (i) G has a clique of size k if and only if H has an orientation � whose penalty p(cH (�))

is at most k(k + 1)/2, (ii) the treewidth of H is O (k3). As mentioned above, our H is identical to that in Section 3.2 of
[33], where it is claimed that the treewidth of H is O (k3). This leads to the W[1]-hardness of MPDCOp with respect to the
treewidth, based on the W[1]-hardness of k-Multicolor Clique with respect to k. Thus we prove only (i) below. We first
give the reduction, and then show the equivalence by Lemmas 11 and 12.

The graph H
We construct H for G = (V [1] ∪ V [2] ∪ · · · ∪ V [k], E), where E is partitioned into E[i, j]’s of E[i, j] = {{u, u′} ∈ E | u ∈

V [i], u′ ∈ V [j]} for 1 ≤ i < j ≤ k. First we assume k ≥ 3, since 2-Multicolor Clique is trivial. Also, for some integers
 and

′ , we can assume that |V [i]| =
 for all i and |E[i, j]| =
′ for all i and j, since adding an isolated vertex and/or adding
an edge with two vertices which are not incident to any other edges does not change the existence of k-clique in G when
k ≥ 3.

We give a vertex in V [i] for each i a unique number between 1 and
 as an identifier in V [i]. In the proof below, a
symbol to represent a vertex in V [i] (e.g., u) also represents its unique identification number between 1 and
. We prepare a
vertex gadget for each V [i], an edge gadget for each E[i, j], and incidence gadgets that connect the vertex and edge gadgets
according to their incidence relations, and H consists of these three types of gadgets. For two vertices u (left) and u′ (right)
in some gadget, we may add an identifier component I(α, β), which consists of α paths with length 2 and β pendant
vertices attached with u′ (see Fig. 9). The vertices between the left and right vertices are called intermediate vertices. Note
that the construction of an identifier component is additive. For example, if u′ is a right part of two identifier components
I(α, β) and I(α′, β ′), u′ has β + β ′ pendant vertices in total.

We now define the vertex gadget for V [i]. A vertex gadget has three types of components, one representative vertex,
original vertices, and connector vertices. The representative vertex of V [i] is v̂ i . The original vertices correspond to the
67

Y. Asahiro, J. Jansson, E. Miyano et al. Theoretical Computer Science 900 (2022) 53–78
Fig. 9. (Left) Identifier component I(α,β) and (Right) its actual structure.

Fig. 10. Vertex gadget for V [i].

Fig. 11. Edge gadget for E[i, j].

vertices in V [i] of G . For original vertices, we use the same symbols of G . The connector vertices are ŷi j ’s and ẑi j ’s for
every j(= i). The representative vertex v̂ i is adjacent to all the original vertices. An original vertex u is connected with a
connector vertex via an identifier component; for every j(= i), u and ŷi j (resp., ẑi j) are connected by I(u, 2
 − u) (resp.,
I(2
 − u, u)), where u is left and ŷi j (resp., ẑi j) is right in the identifier component. Fig. 10 shows an example of a vertex
gadget.

We next define the edge gadget for E[i, j]. An edge gadget also has three types of components, one representative vertex,
edge vertices, and connector vertices. The representative vertex of E[i, j] is êi, j . The edge vertices correspond to the edges
in E[i, j] of G . The connector vertices are four vertices p̂i j , q̂i j , p̂ ji , and q̂ ji . The representative vertex êi, j is adjacent to
all the edge vertices. For edge e = {u, u′} with u ∈ V [i] and u′ ∈ V [j] in E[i, j] of G , the corresponding edge vertex e is
connected with connector vertices p̂i j , q̂i j , p̂ ji , and q̂ ji via identifier component I(2
 − u, u), I(u, 2
 − u), I(2
 − u′, u′), and
I(u′, 2
 − u′), respectively, where e is left in the identifier components. Fig. 11 shows an example of an edge gadget.
68

Y. Asahiro, J. Jansson, E. Miyano et al. Theoretical Computer Science 900 (2022) 53–78
Fig. 12. Incidence gadget.

We finally define an incidence gadget, which consists of vertices r̂i j ’s and ŝi j ’s for all pairs of i and j(= i). A vertex r̂i j is
connected with ŷi j and p̂i j via two identifier components I(2
, 0)’s, and similarly, a vertex ŝi j is connected with ẑi j and q̂i j
via two identifier components I(2
, 0)’s. Fig. 12 shows how an incidence gadget is.

Degree constraints
We now specify the degree constraints. First we set the degree constraints for the vertices (except for left and right

vertices) in identifier components as follows. Although identifier components are included in vertex, edge, and incidence
gadgets, we use the same degree constraints for every intermediate (or pendant) vertex:

• intermediate vertex v: av = bv = 1
• pendant vertex v: av = bv = 0

Let us describe the degree constraints for other vertices than these intermediate and pendant vertices. We set the degree
constraints of the vertices in the vertex gadget for V [i] as follows:

• representative vertex v̂ i: av̂i
= bv̂i

=
 − 1
• original vertex v: av = bv = 0
• connector vertex ŷi j for j = i: aŷi j

= bŷi j
= 2
2

• connector vertex ẑi j for j = i: aẑi j
= bẑi j

= 2
2

Next we set the degree constraints of the vertices in the edge gadget for E[i, j] as follows:

• representative vertex êi, j: aêi, j
= bêi, j

=
′ − 1
• edge vertex e: ae = be = 0
• connector vertex p̂i j : ap̂i j

= bp̂i j
= 2

′

• connector vertex q̂i j: aq̂i j
= bq̂i j

= 2

′
• connector vertex p̂ ji : ap̂ ji

= bp̂ ji
= 2

′

• connector vertex q̂ ji : aq̂ ji
= bq̂ ji

= 2

′

Lastly we set the degree constraints for the vertices in the incident gadgets for every pair of i and j(= i):

• vertex r̂i j: ar̂i j
= br̂i j

= 2

• vertex ŝi j: aŝi j
= bŝi j

= 2

Penalty function
The remainder of the reduction is to choose a penalty function. We let the penalty function p be the summation of a

step function g such that g(x) = 0 for x = 0 and g(x) = 1 for x > 0. This function g is a step function and also a concave
function. This completes the reduction.

Lemmas
In the following, we show that G has a clique of size k if and only if H has an orientation � such that p(ch(�)) ≤

k(k + 1)/2 by Lemmas 11 and 12. Theorem 10 follows from these two lemmas and the fact that the treewidth of H is
O (k3).

Lemma 11. If G has a clique of size k, then H has an orientation whose penalty is at most k(k + 1)/2.

Proof. Let C = {v1, v2, . . . , vk} be a clique of size k in G , where we assume that vi ∈ V [i] without loss of generality. We
construct an orientation of H whose penalty is at most (more precisely, equal to) k(k + 1)/2 from C . First we orient the
edges which are incident to the original vertex vi in the vertex gadget for V [i] outward from vi for 1 ≤ i ≤ k. After that
similarly for edges which are incident to the edge vertex e = {vi, v j} for every pair of vi, v j ∈ C , we orient them outward
from e. By these, the degree constraints of these vertices corresponding to C and its edges in G are violated, and the total
penalty on these vertices is k + k(k − 1)/2 = k(k + 1)/2. Since the penalty is already k(k + 1)/2 at this moment, we need to
orient the other edges so as to satisfy the degree constraints of all the remaining vertices. In below, we describe such an
orientation.
69

Y. Asahiro, J. Jansson, E. Miyano et al. Theoretical Computer Science 900 (2022) 53–78
First of all, every edge incident to a pendant vertex in identifier components is oriented toward the pendant vertex, since
every pendant vertex must have outdegree 0 by its degree constraints. We orient the edges in the vertex gadget for V [i] as
follows.

• For the representative vertex v̂ i , we orient the edges incident to v̂ i outward from v̂ i , except for the edge {v̂ i, vi} (which
is already oriented as (vi, ̂vi) in the above). The outdegree of v̂ i becomes
 − 1 since |V [i]| =
, and satisfies the degree
constraint for v̂ i .

• For any original vertex v ∈ V [i] \ {vi}, we orient all the edges incident to v toward v . (Note that this does not contradict
the orientation (v̂ i, v) of the edge {v̂ i, v} already determined in the above.) These original vertices have outdegree 0
which satisfies their degree constraints.

• For any intermediate vertex v between an original vertex u and ŷi j (or ẑi j), the edge {u, v} is already oriented as (u, v)

for u = vi or (v, u) for u = vi . In order to satisfy the degree constraint of v , i.e., av = bv = 1, the orientation of the edge
{v, ŷi j} (or {v, ̂zi j}) is uniquely determined.

The above guarantees that the penalties on representative vertex, original vertices, and intermediate vertices in a vertex
gadget are 0. On the other hand, the outdegrees of ŷi j ’s and ẑi j ’s have not been determined only by the above, although
the number of edges already oriented outward from ŷi j (or ẑi j) is 2
(
 − 1) + 2
 − vi = 2
2 − vi (or 2
2 − 2
 + vi); the
outdegree of those vertices will be determined after we decide orientations for the edges in incidence gadgets.

Similar to the vertex gadgets, we orient the edges in the edge gadget for E[i, j] as follows.

• For the representative vertex êi, j , we orient the edges incident to êi, j outward from êi, j , except for the edge
{êi, j, {vi, v j}} (which is already oriented as ({vi, v j}, ̂ei, j) in the above). The outdegree of êi, j becomes
′ − 1 since
|E[i, j]| =
′ , and satisfies the degree constraint for êi, j .

• For any edge vertex e ∈ E[i, j] \ {{vi, v j}}, we orient all the edges incident to e toward e. (Note that this does not
contradict the orientation (êi, j, e) of the edge {êi, j, e} already determined in the above.) These edge vertices have
outdegree 0 which satisfies their degree constraints.

• For any intermediate vertex v between an edge vertex e and p̂i j (q̂i j , p̂ ji , or q̂ ji), the edge {e, v} is already oriented
as (e, v) for e = {vi, v j} or (v, e) for e = {vi, v j}. In order to satisfy the degree constraint of v , i.e., av = bv = 1, the
orientation of the edge {v, p̂i j} (q̂i j , p̂ ji , or q̂ ji) is uniquely determined.

By the above, the numbers of outgoing edges of p̂i j (or p̂ ji) and q̂i j (or q̂ ji) are 2

′ − 2
 + vi and 2

′ − vi , respectively.
Let us look at an incidence gadget between ŷi j and p̂i j . By the above, ŷi j already has 2
2 − vi outgoing edges. Thus,

to meet the degree constraint, vi edges between ŷi j and r̂i j in the identifier component are oriented toward r̂i j , while the
other 2
 − vi edges are oriented toward ŷi j . Similarly, since p̂i j already has 2

′ − 2
 + vi outgoing edges, 2
 − vi edges
between p̂i j and r̂i j are oriented toward r̂i j , while other vi edges are oriented toward p̂i j . By these orientations of the edges
in the incidence gadget, r̂i j has outdegree 2
, which satisfies the degree constraint for r̂i j .

As for an incidence gadget between ẑi j and q̂i j , similar arguments to the above indicate that 2
 − vi edges and vi edges
between ẑi j and ŝi j are oriented toward ŝi j and toward ẑi j , respectively, and then 2
 − vi edges and vi edges between q̂i j
and ŝi j are oriented toward q̂i j and toward ŝi j , respectively. Hence, all of ẑi j , q̂i j , and ŝi j satisfy their degree constraints. The
discussion for incidence gadgets between ŷ ji ’s and p̂ ji ’s or between ẑ ji ’s and q̂ ji ’s are similar. This completes the proof. �
Lemma 12. If H has an orientation whose penalty is at most k(k + 1)/2, G has a clique of size k.

Proof. Let � be the orientation of H , whose penalty is at most k(k + 1)/2, that is, at most k(k + 1) vertices violate the
degree constraints under �. We can assume that all the representative vertices satisfy their degree constraints under � by
the following reason. If a representative vertex v̂ i violates the degree constraint under �, its outdegree is either
 or at
most
 − 2 since av̂i

= bv̂i
=
 − 1 and dH (v̂ i) =
. In the former case, even if all the original vertices in V [i] satisfy the

degree constraints (i.e., their outdegrees are all 0), we choose one u ∈ V [i] and flip (v̂ i, u) to (u, ̂vi). Then v̂ i gets to satisfy
the degree constraint instead of u and u violates its degree constraint, which does not increase the total penalty. In the
latter case, we suppose that the outdegree of v̂ i is
 − γ , where 2 ≤ γ ≤
, which implies that at least γ vertices in V [i]
violate their degree constraints. We arbitrarily choose γ − 1 vertices from them and flip the edges between v̂ i and them. As
a result v̂ i gets to satisfy the degree constraint, and each of those γ − 1 vertices still violates its degree constraint or also
gets to satisfy its degree constraint. Thus we could make the representative vertex v̂ i satisfy its degree constraint without
increasing the number of vertices violating the degree constraints, i.e., without increasing the total penalty. Since a similar
argument holds for a representative vertex êi, j in each edge gadget E[i, j], we can assume that every representative vertices
in the vertex gadgets and the edge gadgets satisfy their degree constraints under �.

For each vertex gadget for V [i], the representative vertex v̂ i is assumed to satisfy its degree constraint av̂i
= bv̂i

=
 − 1
under � as mentioned above. Since dH (v̂ i) =
, exactly one edge between v̂ i and original vertices is oriented outward from
v̂ i . Thus at least one original vertex ui in each vertex gadget for V [i] violates its degree constraint aui = bui = 0, where
other original vertices than ui may also have outdegree at least one. Similarly, at least one edge vertex in each edge gadget
violates its degree constraint. Since the number of the vertex and the edge gadgets is k + k(k − 1)/2 = k(k + 1)/2, at least
70

Y. Asahiro, J. Jansson, E. Miyano et al. Theoretical Computer Science 900 (2022) 53–78
k(k + 1)/2 vertices violate their degree constraints under �. However, we have assumed that the total penalty of � is at
most k(k + 1)/2. This implies that exactly one original vertex (resp., edge vertex) in a vertex gadget (resp., an edge gadget)
violates the degree constraint and no other vertices in a vertex gadget (resp., an edge gadget) violate the degree constraints.
In particular, every edge incident to a pendant vertex v in an identifier component is oriented toward v , since the degree
constraint of v is av = bv = 0. We also assume that such edges are oriented toward pendant vertices in �.

Let ui (resp., ei, j = {u′
i, u

′
j}) be the vertex violating the degree constraints in the vertex gadget for V [i] (resp., the edge

gadget for E[i, j]). Since the vertices V [i] \ {ui} (resp., E[i, j] \ {ei, j}) in a vertex gadget (resp. an edge gadget) satisfy the
degree constraints, all the edges incident to them are oriented toward them. By the degree constraints of intermediate
vertices (they must have outdegree one) and pendant vertices (they must have outdegree zero) in an identifier component,
the above orientation for representative vertices, original vertices, and edge vertices determines orientation of edges in
identifier components between V [i] \ {ui} and ŷi j (or ẑi j), and also edges in between E[i, j] \ {ei, j} and p̂i j (or q̂i j , p̂ ji , q̂ ji).
The numbers of these (already determined) outgoing edges from ŷi j and ẑi j are 2
2 − ui and 2
2 − (2
 − ui), respectively,
where edges incident to pendant vertices are already oriented. Similarly, the number of (already determined) outgoing edges
from p̂i j , q̂i j , p̂ ji , and ˆq ji are 2
(
′ − 1) + u′

i , 2

′ − u′
i , 2
(
′ − 1) + u′

i , and 2

′ − u′
i respectively. In the following, we discuss

about the remaining edges, i.e., paths between ui and ei, j via connector vertices and identifier components.
For an identifier component I ′ = I(α, β) between a left vertex v and a right vertex v ′ , if we decide to orient γ edges

(0 ≤ γ ≤ α) between v and intermediate vertices in I ′ outward from v , it determines orientation of the other unoriented
edges in I ′ to meet the degree constraints: α − γ edges between v and intermediate vertices in I ′ are oriented toward v ,
and then γ (or α −γ) edges between v ′ and intermediate vertices in I ′ are oriented toward v ′ (or outward from v ′), where
all edges incident to pendant vertices are already oriented outward from v ′ in the above. We say this process γ -propagation
from v to v ′ in the following. Note that we have seen 0-propagation in the above, say, from an original vertex ui to ŷi j in a
vertex gadget.

We here focus on a path from ui to ei, j via ŷi j , r̂i j , p̂i j , and identifier components. Let γ be the number of edges oriented
from ui to intermediate vertices in the identifier component I ′ between ui and ŷi j , where 0 ≤ γ ≤ ui . Then γ -propagation
from ui to ŷi j orients ui −γ (or γ) edges in I ′ outward from ŷi j (or toward ŷi j). Since ŷi j already has other 2
2 −ui outgoing
edges mentioned above, total number of outgoing edges from ŷi j so far is (2
2 − ui) + (ui − γ) = 2
2 − γ . In order to meet
the degree constraint of ŷi j , aŷi j

= bŷi j
= 2
2, γ more edges should be oriented outward from ŷi j . Thus γ -propagation from

ŷi j to r̂i j occurs, and then it causes another γ -propagation from r̂i j to p̂i j , which increases the outdegree of p̂i j by 2
 − γ .
Together with the already oriented 2
(
′ − 1) + u′

i outgoing edges, r̂i j has outdegree at least (2
(
′ − 1) + u′
i) + (2
 − γ) =

2

′ + u′
i − γ . Since r̂i j satisfies the degree constraint, u′

i − γ ≤ 0 must hold. This implies that u′
i ≤ γ ≤ ui .

Similarly, we focus on a path from ui to ei, j via ẑi j , ŝi j , q̂i j , and identifier components. Recall that the numbers of the
predetermined outgoing edges from ẑi j and q̂i j are 2
2 − (2
 − ui) and 2

′ − u′

i , respectively. Let γ ′ be the number of
edges oriented from ui to intermediate vertices in the identifier component between ui and ẑi j , where 0 ≤ γ ′ ≤ 2
 − ui . By
a similar argument to the above, 2
 − γ ′ edges are oriented from q̂i j to intermediate vertices in an identifier component
between ŝi j and q̂i j . Hence q̂i j has outdegree at least (2

′ − u′

i) + (2
 − γ ′). Since q̂i j satisfies the degree constraint aq̂i j
=

bq̂i j
= 2

′ , 2
 − γ ′ − u′

i ≤ 0 must hold. This implies that ui ≤ 2
 − γ ′ ≤ u′
i . Combining this with above u′

i ≤ ui , we have
ui = u′

i .
Since u j = u′

j holds by a similar argument, an edge vertex ei, j = {u′
i, u

′
j} violating its degree constraint under � corre-

sponds to the edge between ui and u j in G , both of which violate the degree constraints in �(H). These imply that vertices
violating the degree constraints under � for H correspond to a clique of size k in G . This completes the proof. �
4. Edge-weighted graphs

In the previous sections, the problem MPDCOp is defined on unweighted graphs. As a generalization, we can define the
weighted version of MPDCOp (MPDCOweighted for short), in which the input is a weighted graph G = (V , E, w), where V and
E are the set of vertices and edges, respectively, and w is a weight function that assigns a weight (a nonnegative integer)
to each edge. In this problem variant, the outdegree of a vertex is defined as the sum of weights of outgoing arcs incident
to it in MPDCOweighted . Let W denote the maximum possible outdegree, i.e., W = maxv∈V {∑u∈NG (v) w({v, u})}.

First, we show an inapproximability result for MPDCOweighted for planar bipartite graphs in Section 4.1. Then Section 4.2
extends the algorithms in Sections 3.1 and 3.2 for MPDCOweighted on trees and graphs with bounded treewidth. Lastly, in
Section 4.3, we restrict our attention to stars, a rather restricted subclass of trees and planar bipartite graphs, and then
show some tractability and intractability results.

4.1. Planar bipartite graphs

In Theorem 1, we show that it is strongly NP-hard to approximate the unweighted version MPDCOp within a ratio of
2 − o(1) for concave and step functions. In this section, we show much stronger inapproximability of MPDCOweighted ; it
is impossible to approximate MPDCOweighted within a ratio of any polynomial-time computable function unless P = N P ,
although we can solve the problem in polynomial time for unweighted graphs with convex functions as in Section 2.

First we show the next theorem.
71

Y. Asahiro, J. Jansson, E. Miyano et al. Theoretical Computer Science 900 (2022) 53–78
Theorem 13. It is strongly NP-hard to distinguish O P T (G) = 0 and O P T (G) > 0 for MPDCOweighted with a convex, concave, or step
function on weighted planar bipartite graphs.

Proof. We give a reduction from the decision version of MinMaxO with target value k, i.e., checking whether there is an
orientation of G such that the maximum weighted outdegree is at most k. This problem is strongly NP-hard for weighted
planar bipartite graphs [13].

Let (G, k) be an instance of the decision version of MinMaxO, i.e., G is a weighted planar bipartite graph and k is a
nonnegative integer at least 2. We use the graph G itself as a part of the instance of MPDCOweighted . Then we set av = 0
and bv = k for every vertex v ∈ V (G), and choose a function g in the penalty function satisfying the condition that g(x) > 0
if and only if x > 0. Note that many convex, concave, and step functions satisfy this condition for g . This reduction is done
in polynomial time.

Let O P T (G) be the total penalty for G in the problem MPDCOweighted . It is easy to see that there is an orientation for G
in which the maximum outdegree of a vertex is at most k if and only if O P T (G) = 0. Namely, MPDCOweighted contains the
decision version of MinMaxO as a subproblem. Thus, the strong NP-hardness of MPDCOweighted on weighted planar bipartite
graphs is implied by the strong NP-hardness of the decision version of MinMaxO on planar bipartite graphs. �

Based on the above theorem, we show the next corollary.

Corollary 14. Suppose that ρ(n) ≥ 1 is any polynomial-time computable function. Then, there is no polynomial-time ρ(n)-
approximation algorithm for MPDCOweighted on weighted planar bipartite graphs whose penalty function is linearly separable and
convex (concave, or step) unless P = N P .

Proof. For the purpose of obtaining a contradiction, assume that there exists a polynomial-time ρ(n)-approximation al-
gorithm ALG for MPDCOweighted . The algorithm ALG finds an orientation of G having total penalty ALG(G) such that
O P T (G) ≤ ALG(G) ≤ ρ(n) · O P T (G), where O P T (G) is the minimum total penalty for G . Hence, one can determine whether
O P T (G) > 0 or O P T (G) = 0 in polynomial time using ALG based on the observation that ALG(G) > 0 if and only if
O P T (G) > 0. This contradicts Theorem 13. The corollary follows. �
4.2. Graphs with bounded treewidth

In the previous section, we showed the strong NP-hardness of MPDCOweighted on planar bipartite graphs. A typical sub-
class of planar bipartite graphs is trees. In Section 3, we designed a polynomial-time algorithm for MPDCOp on unweighted
trees. In this section, we first extend it to a pseudo-polynomial-time algorithm for MPDCOweighted on weighted trees.

Let us consider the algorithm for trees in Section 3.1. The computation of (4) could be done using a sorting algorithm for
the unweighted version MPDCOp . For MPDCOweighted , we need to find a subset N ′ ⊆ NT (r) such that

∑
v∈N ′ w({r, v}) = k

and
∑

s∈N ′ h(Ts) is minimum. Using an algorithm for the KNAPSACK problem [34], we can find such N ′ in time O (|NG(r)| ·
W): Given a sequence of pairs (xi, yi) of nonnegative integers for 1 ≤ i ≤ z and a value B , KNAPSACK asks to find X ′ ⊆ X
such that

∑
xi∈X ′ xi ≤ B and

∑
xi∈X ′ yi is the maximum among all such subsets. The algorithm in [34] runs in O (zB) time,

and finds a subset X ′ satisfying
∑

xi∈X ′ xi = B ′ for every 1 ≤ B ′ ≤ B , which maximizes
∑

xi∈X ′ yi . Thus, replacing h(Ts) with
C − h(Ts) for a large value C such that C ≥ maxs∈NT (r) h(Ts), the algorithm in [34] can obtain a subset N ′ ⊆ NT (r) such that ∑

v∈N ′ w({r, v}) = k and
∑

s∈N ′ h(Ts) is minimum, which takes O (|NG(r)| · k) = O (|NG(r)| · W) time. In practice, we do not
need to compute once for every k; only spending O (|NG(r)| · W) time for the case k = W , we can construct a table which
stores the information on the relation between k and the value minN ′⊆NT (r),|N ′|=k{∑s∈N ′ h(Ts)}. Then we can refer entries
in the table for each k in constant time.

If
∑

s∈NT (r) q+(Ts) and min{∑s∈N ′ h(Ts)} are given, (3) can be computed in constant time. Here, since
∑

s∈NT (r) q+(Ts)

is common for every k, we can compute it once in advance spending O (|NG(r)|) time. Since it takes O (|NG(r)|) time to
compute g(θr(k)) +q(T , k) and g(θr(k + 1)) +q(T , k) for each k ∈ {0, . . . , W }, (1) and (2) can be computed in O (|NG (r)| · W)

time. In summary, for each k, it takes O (|NG (r) · W |) + O (|NG(r)|) + O (|NG(r)| · W) = O (|NG(r) · W |) time, where the first
and the second terms in the left hand side are respectively for solving KNAPSACK and computing

∑
s∈NT (r) q+(Ts) described

in the above. Thus the estimation of the total running time in the equation (6) is modified as∑
v∈V (G)

O (|NG(v)| · W) = O (W n),

and we have the following theorem.

Theorem 15. For any linearly separable penalty function, MPDCOweighted can be solved in O (W n) time when the input graph is a tree.

Next, we consider the FPT algorithm parameterized by treewidth τ and the maximum degree � in Section 3.2. Since the
outdegree of each vertex is at most W in MPDCOweighted , the set D(G, Xi) of outdegree vectors has size at most O (W τ+1),
72

Y. Asahiro, J. Jansson, E. Miyano et al. Theoretical Computer Science 900 (2022) 53–78
although this size was O (�τ+1) for the unweighted version MPDCOp . The time complexity for each case is modified as
follows.

• The node i is a leaf node.
The initial formula O P T (i, ()) = 0 for the unweighted version can be used as it is, and it can be computed in constant
time, too. �

• The node i is an introduce-vertex node.
The recursive formula (8) can be used as it is. Since |D(G, Xi)| = O (W τ+1), the total time increases to O (τ W τ+1) from
O (τ�τ+1). �

• The node i is a forget node.
In the recursive formula (9), we need to take the minimum. For the first case in (9), the range of h is 0 ≤ h ≤ dG (jk),
however in MPDCOweighted , it is replaced with 0 ≤ h ≤ W . For the second case in (9), the size of Jk(i) increases to
O (W) from O (�) since 0 ≤ jk ≤ W , and hence Jk(i) can be obtained in O (τ W) time. Thus, for each i ∈ D(G, Xi), it
takes O (τ W) time, and hence the total time needed increases to O (τ W τ+2) from O (τ�τ+2). �

• The node i is an introduce-edge node.
The crucial difference from before is that when orienting an edge {ik, ik′ }, the increase of outdegree is w({ik, ik′ })
instead of one for the unweighted version MPDCOp . Thus, we define i(k) as an |Xi |-dimensional vector such that i(k)

k =
ik − w({ik, ik′ }) and i(k)

h = ih for h = k. The vector i(k′) is defined similarly. Here, by checking ik ≥ w({ik, ik′ }) (or
ik′ ≥ w({ik, ik′ })), we can know whether i(k) (or i(k′)) belongs to D(G, X j). (This differs from checking whether ik

and ik′ are positive for the unweighted version of the problem.) Therefore, to handle this case, the recursive formula
(13) in Claim 7 is modified as follows.

O P T (i, i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

O P T (j, i(k)) − g(θik (ik − w({ik, ik′ }))) + g(θik (ik))

if ik ≥ w({ik, ik′ }) and ik′ < w({ik, ik′ }),
O P T (j, i(k′)) − g(θik′ (ik′ − w({ik, ik′ }))) + g(θik′ (ik′))

if ik < w({ik, ik′ }) and ik′ ≥ w({ik, ik′ }),
min{O P T (j, i(k)) − g(θik (ik − w({ik, ik′ }))) + g(θik (ik)),

O P T (j, i(k
′)) − g(θik′ (ik′ − w({ik, ik′ }))) + g(θik′ (ik′))}

if ik ≥ w({ik, ik′ }) and ik′ ≥ w({ik, ik′ }), and

+∞
otherwise.

The above can still be computed in O (τ) time for each i ∈ D(G, Xi). Since |D(G, Xi)| = O (W τ+1), the total time in-
creases to O (τ W τ+1) from O (τ�τ+1). �

• The node i is a join node.
The recursive formula (14) can be used as it is, however the size of P (i) increases to O (W τ+1) since the maximum
outdegree of a vertex is at most W in MPDCOweighted . Thus for each i ∈ D(G, Xi), the recursive formula (14) can be
computed in O (τ W τ+1), and hence the total time needed is O (τ W 2τ+2). �

From the above observations, the algorithm spends O (τ 2 W 2τ+2n) time, since the number of nodes in a nice tree decom-
position is O (τn).

Theorem 16. For an input graph, suppose that its nice tree decomposition with treewidth τ and O (τn) nodes is given. Then, for any
linearly separable penalty function, MPDCOweighted can be solved in O (τ 2W 2τ+2n) time.

4.3. Stars

In the previous sections, we saw that MPDCOweighted is intractable for planar bipartite graphs although we could design
pseudo-polynomial-time algorithms for graphs with bounded treewidth. A natural question is that whether we can design
any polynomial-time algorithm for weighted trees or not. In this section, we investigate stars, which is more restricted class
of graphs than trees. First we show that MPDCOweighted is weakly NP-hard even for stars with some restrictions on degree
constraints, and then propose an algorithm to cope with those instances.

We only consider stars having at least three vertices in this section (since a star of two vertices has only one edge and
an optimal orientation can be obtained easily by orienting the edge in either way). For a star G , a vertex incident to only
one edge is called a leaf, and the vertex incident to at least two vertices is called the center.

For a weighted graph G = (V , E, w) and degree constraints on its vertices of an instance of MPDCOweighted , let R(G) be
the set of pairs of a lower bound and an upper bound of degrees for each vertex, i.e., R(G) = {(av , bv) | v ∈ V }. The size
73

Y. Asahiro, J. Jansson, E. Miyano et al. Theoretical Computer Science 900 (2022) 53–78
|R(G)| of R(G) represents the number of variations of the degree constraints. O P T (G) denotes the optimal penalty for G .
We define restricted sets G and H of edge-weighted stars based on |R(G)|. The set G contains every edge-weighted star G
satisfying the following two conditions.

• |R(G)| ≤ 2, i.e., R(G) = {(a1, b1), (a2, b2)} for some (a1, b1) and (a2, b2) (possibly (a1, b1) = (a2, b2)).
• The maximum weight of an edge of G is at most max{b1, b2}.

Similarly, the set H ⊆ G contains every edge-weighted star G satisfying the following two conditions.

• |R(G)| = 1, i.e., R(G) = {(a, b)} for some a and b.
• The maximum weight of an edge of G is at most b.

Even for these rather restricted instances G and H, M P DC O weighted is weakly NP-hard.

Theorem 17.

(I) It is weakly NP-hard to distinguish O P T (G) = 0 and O P T (G) > 0 for M P DC O weighted on G ∈ G with a convex, concave, or step
function.

(II) Suppose that k is a positive number. It is weakly NP-hard to distinguish O P T (G) = k and O P T (G) > k for M P DC O weighted on
G ∈H with a concave or step function.

Proof. We give reductions from the problem Partition, which is weakly NP-hard [35]. Given a set X of non-negative
integers x1, x2, . . . , xy , where y is the number of the integers, Partition asks whether there is a set X ′ ⊆ X satisfying ∑

xi∈X ′ xi = ∑
xi∈X xi/2. Let B = ∑

xi∈X xi/2. Note that we can assume that max1≤i≤y{xi} < B , since if x j > B then clearly
x j is not included in the solution X ′ , and if x j = B for some j, then it can be easily found. Construct an instance of
MPDCOweighted , i.e., a star G , a penalty function, and degree constraints, from an instance of Partition as follows. We
prepare the center r and its children (leaves) v1, v2, . . . , v y . The weight of an edge {r, vi} is set to xi for 1 ≤ i ≤ y.

Let us describe penalty functions and degree constraints for (I) and (II).

(I) The degree constraint is set to (B, B) for r, and (0, B) for every vi , where R(G) = {(B, B), (0, B)}. As the penalty function,
we choose a non-decreasing function g such that g(0) = 0 and g(x) > 0 if x > 0, where g can be a convex function, a
concave function, or a step function.

(II) The degree constraint is set to (B, B) for every vertex, where R(G) = {(B, B)}. As the penalty function, we choose a
non-decreasing function g such that g(0) = 0 and g(x) = k/y if x > 0, where g can be regarded as a concave function
and also as a step function.

Clearly, the above reductions can be done in polynomial time. One important property of G is that the penalty of a leaf vi
is always 0 for (I) and k/y for (II) regardless of the orientation of the edge {r, vi}, since 0 ≤ xi < B .

We show that there is a set X ′ such that
∑

xi∈X ′ xi = B if and only if O P T (G) = 0 for (I) (or O P T (G) = k for (II)).
(⇒) Suppose that there is a set X ′ such that

∑
xi∈X ′ xi = B . For each edge {r, vi}, orient it as (r, vi) if xi ∈ X ′ , and (vi, r)

otherwise. Under this orientation, r has outdegree B and hence its penalty is 0. As mentioned above, every leaf has penalty
0 for (I) (or k/y for (II)). Thus the total penalty of this orientation is 0, i.e., O P T (G) = 0 for (I) (or O P T (G) = k for (II)).

(⇐) Assume there is an orientation of G with total penalty 0 for (I) (or k for (II)). Since the total penalty of this
orientation is 0 for (I) (or k for (II)), the center r has outdegree B . Let E ′ be the set of edges oriented outward from r. Since
the outdegree of r is B , it satisfies

∑
(r,vi)∈E ′ xi = B . Thus, based on E ′ , a set X ′ such that

∑
xi∈X ′ xi = B can be constructed

as X ′ = {xi | (r, vi) ∈ E ′}. �
Theorem 17(I) gives an inapproximability for G:

Corollary 18. Let ρ(n) ≥ 1 be any polynomial-time computable function. For any linearly separable penalty function with a non-
decreasing function, M P DC O weighted on G has no polynomial-time ρ(n)-approximation algorithm unless P = N P .

Proof. The proof is similar to the one for Corollary 14. If there is a polynomial-time ρ(n)-approximation algorithm ALG
for MPDCOweighted on G , it can determine whether O P T (G) = 0 or O P T (G) > 0 in polynomial time since O P T (G) ≤
ALG(G) ≤ ρ(n) · O P T (G). Thus, by the reduction in Theorem 17, we can solve Partition using ALG in polynomial time,
which contradicts the weak NP-hardness of Partition. �

Compared to the above inapproximability for G , checking whether O P T (G) = 0 or O P T (G) > 0 for H can be done in
linear time.
74

Y. Asahiro, J. Jansson, E. Miyano et al. Theoretical Computer Science 900 (2022) 53–78
Theorem 19. For any linearly separable penalty function, there is a linear-time algorithm which can check whether O P T (G) = 0 or
O P T (G) > 0 for G ∈H

Proof. Let the common degree constraint be (a, b), and the maximum weight of an edge be wmax . Since G is a star, it holds
that |E(G)| = |V (G)| − 1. This implies that there is a vertex having outdegree 0 under any orientation. Hence, if a > 0, then
we can know that O P T (G) > 0. Assume a = 0 in below.

Since every edge is oriented and its weight is contained as a part of outdegree of a vertex, we observe that the maximum
outdegree of a vertex is at least wmax under any orientation. By this observation, b ≥ wmax holds if O P T (G) = 0. Consider a
linear-time algorithm in which every edge is oriented toward the center in turn. The maximum outdegree of a vertex under
this orientation is wmax . Namely, if b ≥ wmax , the total penalty of this orientation is 0, i.e., O P T (G) = 0. Hence, b ≥ wmax

holds if and only if O P T (G) = 0.
By the above discussion, we can check whether O P T (G) = 0 or O P T (G) > 0 by checking whether both of a = 0 and

b ≥ wmax hold or not. Note that, in the above, we construct an orientation by an algorithm, however we do not need to
construct any orientation if we just want to know whether O P T (G) = 0 or not; we just need to scan the edges in linear
time and know the maximum weight of an edge. The theorem follows. �
Remark 3. Also for an edge-weighted tree G with |R(G)| = 1, checking whether O P T (G) = 0 or O P T (G) > 0 can be done
in linear time by checking a = 0 and b ≥ wmax . Consider a linear-time algorithm in which an arbitrary vertex is chosen as
root and every edge is oriented toward the root. Under the obtained orientation, the outdegree of an vertex is at least 0 and
at most wmax . Then, exactly the same argument as the above proof also shows that there is a vertex of outdegree 0 and
another vertex of outdegree at least wmax under any orientation for edge-weighted trees.

By Theorem 19, we can easily know whether O P T (G) = 0 or not for a star in H. Hence there may be an approximation
algorithm for H, despite the inapproximability for G . Indeed we propose a polynomial-time approximation scheme (PTAS)
for H in below.

For a star, the inward orientation represents the orientation in which every edge is oriented toward the center. We say
that an edge is oriented inward if it is oriented toward the center, outward otherwise. Clearly the inward orientation is
obtained in linear time. The next lemma relates the penalty of inward orientation with that of an optimal orientation.

Lemma 20. For a star G ∈H, suppose that k ≥ 1 edges are oriented outward in an optimal orientation. Then, for any linearly separable
penalty function, A(G)/O P T (G) ≤ 1 + 1/k, where A(G) is the total penalty of the inward orientation.

Proof. Let R(G) = {(a, b)} and the penalty function be linearly separable with a function g . The center and leaves of G are
denoted by r and v1, v2, . . . , vn−1, respectively. The weight of an edge {r, vi} is denoted by wi , where wi ≤ b holds since
G ∈H. Let �∗ and � be an optimal orientation and the inward orientation, respectively. Also O P T (G) and A(G) denote the
total penalties of �∗ and �, respectively.

Without loss of generality, in the optimal orientation, suppose that edges {r, v1}, . . . , {r, vk} are oriented outward for
some 1 ≤ k ≤ n − 1, and the rest of the edges are oriented inward, where no edge is oriented inward when k = n − 1. Let
w ′ = ∑k

i=1 wi . We partition the vertices v1, . . . , vk into two sets S and M depending on edge weights such that S = {vi |
wi < a, 1 ≤ i ≤ k} and M = {vi | a ≤ wi ≤ b, 1 ≤ i ≤ k}. Let P be the sum of the penalties imposed on vk+1, . . . , vn−1, i.e.,
P = ∑n−1

i=k+1 g(cG(�∗, vi))(= ∑n−1
i=k+1 g(cG(�, vi))) if k ≤ n − 2, and 0 if k = n − 1.

One can see that

A(G) = P + g(a) +
∑
vi∈S

g(a − wi),

where the second term g(a) is the penalty on the center r, the third term represents the penalties on the vertices in S , and
then no penalty is imposed on the vertices in M .

On the other hand, depending on w ′ , there are three cases for O P T (G):

(i) w ′ < a: O P T (G) = P + g(a − w ′) + kg(a), where g(a − w ′) is the penalty on the center, and kg(a) is the total penalty
imposed on v1, . . . , vk .

(ii) a ≤ w ′ ≤ b: O P T (G) = P + kg(a).
(iii) b < w ′: O P T (G) = P + g(w ′ − b) + kg(a).

In all these three cases, it holds that

O P T (G) ≥ P + kg(a). (15)

It satisfies that g(a − wi) ≤ g(a) for any vi ∈ S since g is nondecreasing (recall that any separated function g is assumed
to be nondecreasing in our problem setting described in Section 1.1). Thus, it holds that
75

Y. Asahiro, J. Jansson, E. Miyano et al. Theoretical Computer Science 900 (2022) 53–78
A(G) = P + g(a) +
∑
vi∈S

g(a − wi) ≤ P + (k + 1)g(a), (16)

where the inequality comes from the facts that g(a − wi) ≤ g(a) for any vi ∈ S and |S| ≤ k. Since O P T (G) ≥ P + kg(a), we
observe that

A(G)

O P T (G)
≤ P + (k + 1)g(a)

P + kg(a)
= 1 + g(a)

P + kg(a)
≤ 1 + 1

k
. �

Based on the above lemma, we design the following algorithm, which takes G ∈ H and a nonnegative constant k as input
and then outputs an orientation of G .

Step 1: Construct all orientations in which at most k edges are oriented outward (including the inward orientation). Let L
be the set of obtained orientations.

Step 2: For each orientation � ∈L, compute its total penalty p(cG (�)).
Step 3: Output an orientation with min�∈L{p(cG(�))}.

We show that the above algorithm is a PTAS for MPDCOweighted on H with a concave or step function. (Note that
the above algorithm is also a PTAS for convex functions, however we will see that the inward orientation is optimal for
MPDCOweighted on H with convex functions later.)

Theorem 21. For any ε satisfying 0 < ε ≤ 1, there is an O (n1/ε)-time (1 + ε)-approximation algorithm for M P DC O weighted on H
with a concave or step function.

Proof. If at most k edges are oriented outward in an optimal orientation, then Step 1 finds it. Otherwise, the inward
orientation has the penalty at most (1 + 1/(k + 1)) · O P T (G) from Lemma 20, since the optimal orientation has at least
k + 1 outward edges. Namely the approximation ratio of the algorithm is 1 + 1/(k + 1).

Let us estimate the running time of the algorithm. Step 1 needs O (nk+1) time since there are O (nk) orientations satisfy-
ing the condition, i.e., |L| = O (nk) and each orientation is constructed in O (n) time. Step 2 spends O (nk+1) time since O (n)

time is needed to compute the total penalty p(cG (�)) of an orientation � ∈ L. Step 3 spends O (|L|) = O (nk) time to find
the minimum among O (|L|) values of penalties. Thus the total running time is O (nk+1).

Setting ε = 1/(k + 1), the above algorithm is an O (n1/ε)-time (1 + ε)-approximation algorithm, where 0 < ε ≤ 1 since
k ≥ 0. �

In Theorem 17(II), the weak NP-hardness of MPDCOweighted on H is shown for a concave function or a step function.
Hence the above PTAS is a possibly best algorithm for MPDCOweighted on H with a concave function or step function. As for
convex functions, a more careful estimation in the proof of Lemma 20 shows that the inward orientation is optimal for H.
Namely, we can solve the problem MPDCOweighted on H with a concave function in linear time.

Theorem 22. The inward orientation is optimal for MPDCOweighted on H with a convex function, i.e., there is a linear-time algorithm
to solve M P DC O weighted on H with a convex function.

Proof. We consider what happens in the proof of Lemma 20 when the separated penalty function is restricted to be a
convex function. Let g be the separated function of the penalty function. We show that the inward orientation is optimal
for MPDCOweighted on H with a convex function.

If |S| ≤ k − 1, then (16) can be replaced with

A(G) = P + g(a) +
∑
vi∈S

g(a − wi) ≤ P + kg(a),

since g(a − wi) ≤ g(a) for any vi ∈ S . In this case A(G) ≤ P + kg(a) ≤ O P T (G) since P + kg(a) ≤ O P T (G) from (15), i.e.,
A(G) = O P T (G); the inward orientation is optimal.

Assume that |S| = k, i.e., every edge oriented outward in �∗ has weight less than a. Let αi = max{a −∑i
j=1 w j, 0}, where

α0 = a. Note that αk = a − w ′ if w ′ < a and 0 otherwise. We observe that for any i ≥ 1,

g(a) − g(a − wi) ≥ g(αi−1) − g(αi)

holds, since a − (a − wi) = αi−1 − αi = wi , a ≥ αi−1, and g is convex. Hence,∑
vi∈S

(g(a) − g(a − wi)) ≥
∑
vi∈S

(g(αi−1) − g(αi)) = g(α0) − g(αk).

Since |S| = k and hence
∑

v ∈S (g(a) − g(a − wi)) = kg(a) − ∑
v ∈S g(a − wi), we have
i i

76

Y. Asahiro, J. Jansson, E. Miyano et al. Theoretical Computer Science 900 (2022) 53–78
kg(a) −
∑
vi∈S

g(a − wi) ≥ g(α0) − g(αk) = g(a) − g(αk). (17)

If w ′ < a, then g(αk) = g(a − w ′). Thus, based on (17) and (i) in the proof of Lemma 20, it holds that

O P T (G) = P + g(a − w ′) + kg(a) ≥ P + g(a) +
∑
vi∈S

g(a − wi) = A(G),

i.e., the inward orientation is optimal. If w ′ ≥ a, then g(αk) = g(0) = 0. Again based on (17), it holds that

O P T (G) ≥ P + kg(a) ≥ P + g(a) +
∑
vi∈S

g(a − wi) = A(G),

where the first inequality comes from (15). Hence, the inward orientation is optimal also for the case w ′ > a.
For all the cases, the inward orientation is optimal. This shows that there is a linear-time algorithm for MPDCOweighted

on H with a convex function. �
5. Concluding remarks

In this paper, we studied a type of degree-constrained orientation of undirected graphs. The problem is formulated as
an optimization problem that minimizes penalties for violation. We showed inapproximability results of the problem with
concave or step functions. Then we designed polynomial-time algorithms for the problem with convex functions and for the
case where the input is restricted to trees or graphs with bounded treewidth. Finally, we presented several tractability and
intractability results for the edge-weighted variant of the problem.

Designing approximation algorithms for the problem on unweighted general graphs with concave or step functions is a
further research topic. Also, it may be interesting to investigate other restricted graph classes, e.g., interval graphs. To further
consider the hypergraph setting and the edge-weighted variant of the problem, as seen in Sections 2 and 4, respectively is
another topic. Finally, there may be many other possible extensions of the problem to be considered.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgements

This work was partially supported by JST CREST JPMJR1402 and JSPS KAKENHI Grant Numbers JP17H01698, JP17K00016,
JP17K00024, JP17K19960, JP20H05967, JP21K11755, and JP21K19765.

References

[1] H. Robbins, A theorem on graphs, with an application to a problem of traffic control, Am. Math. Mon. 46 (1939) 281–283.
[2] C. Nash-Williams, On orientations, connectivity and odd vertex pairings in finite graphs, Can. J. Math. 12 (1960) 555–567.
[3] T. Ito, Y. Miyamoto, H. Ono, H. Tamaki, R. Uehara, Route-enabling graph orientation problems, in: ISAAC, 2009, pp. 403–412.
[4] A. Schrijver, Combinatorial Optimization, Springer, 2003.
[5] L. Lau, R. Ravi, M. Singh, Iterative Methods in Combinatorial Optimization, Cambridge Texts in Applied Mathematics, Cambridge Univ. Press, 2011.
[6] A. Frank, Connections in Combinatorial Optimization, Oxford University Press, USA, 2011.
[7] H. Landau, On dominance relations and the structure of animal societies: III. The condition for a score structure, Bull. Math. Biol. 15 (1953) 143–148.
[8] S.L. Hakimi, On the degree of the vertices of a directed graph, J. Franklin Inst. 279 (1965) 290–308.
[9] A. Frank, A. Gyárfás, How to orient the edges of a graph?, Combinatorica I (1978) 353–364.

[10] M. Chrobak, D. Eppstein, Planar orientations with low out-degree and compaction of adjacency matrices, Theor. Comput. Sci. 86 (1991) 243–266.
[11] H.N. Gabow, Upper degree-constrained partial orientations, in: SODA, 2006, pp. 554–563.
[12] Y. Asahiro, E. Miyano, H. Ono, K. Zenmyo, Graph orientation algorithms to minimize the maximum outdegree, Int. J. Found. Comput. Sci. 18 (2007)

197–215.
[13] Y. Asahiro, J. Jansson, E. Miyano, H. Ono, K. Zenmyo, Approximation algorithms for the graph orientation minimizing the maximum weighted outdegree,

J. Comb. Optim. 22 (2011) 78–96.
[14] D.R. Page, R. Solis-Oba, A 3/2-approximation algorithm for the graph balancing problem with two weights, Algorithms 9 (2016) 38.
[15] T. Ebenlendr, M. Krčál, J. Sgall, Graph balancing: a special case of scheduling unrelated parallel machines, Algorithmica 68 (2014) 62–80.
[16] G.S. Brodal, R. Fagerberg, Dynamic representation of sparse graphs, in: 6th International Workshop on Algorithms and Data Structures (WADS 1999),

1999, pp. 342–351.
[17] J.K. Lenstra, D.B. Shmoys, É. Tardos, Approximation algorithms for scheduling unrelated parallel machines, Math. Program. 46 (1990) 259–271.
[18] Y. Asahiro, J. Jansson, E. Miyano, H. Ono, Degree-constrained graph orientation: maximum satisfaction and minimum violation, Theory Comput. Syst.

58 (2016) 60–93.
[19] I. Dinur, S. Safra, On the hardness of approximating minimum vertex cover, Ann. Math. (2005) 439–485.
[20] S. Khot, D. Minzer, M. Safra, On independent sets, 2-to-2 games and Grassmann graphs, in: STOC, 2017, pp. 576–589.
[21] S. Khot, D. Minzer, M. Safra, Pseudorandom sets in Grassmann graph have near-perfect expansion, in: 2018 IEEE 59th Annual Symposium on Founda-

tions of Computer Science (FOCS), 2018, pp. 592–601.
77

http://refhub.elsevier.com/S0304-3975(21)00696-4/bib07C96DAE3B9807CF166D251F1B639B21s1
http://refhub.elsevier.com/S0304-3975(21)00696-4/bibA4AD0DBF6F4287324CC1547AB457F7F8s1
http://refhub.elsevier.com/S0304-3975(21)00696-4/bib36DC1B63F115EA1B557A565FFF15F577s1
http://refhub.elsevier.com/S0304-3975(21)00696-4/bibC969D63C082876C2898FFF148786166As1
http://refhub.elsevier.com/S0304-3975(21)00696-4/bib3B4A2AA1B75CAE5A1F62BFF1CA13FB4As1
http://refhub.elsevier.com/S0304-3975(21)00696-4/bib1F34A7095F994C1B3E26CF79448EA9D0s1
http://refhub.elsevier.com/S0304-3975(21)00696-4/bib8CAB1D72CD38D294A860D23E1BD0975Es1
http://refhub.elsevier.com/S0304-3975(21)00696-4/bib933452DE4C1C5387B807C88A2E3B2AAEs1
http://refhub.elsevier.com/S0304-3975(21)00696-4/bib68125EBAFDCFBA4CE36BD041A81AB762s1
http://refhub.elsevier.com/S0304-3975(21)00696-4/bibC8454949EDB9C79E4CA535991C66BD3Fs1
http://refhub.elsevier.com/S0304-3975(21)00696-4/bibD95E4F513D1A8C57681988A262AEFA8Fs1
http://refhub.elsevier.com/S0304-3975(21)00696-4/bibA1FDF464C77E6777542E6E740287607Bs1
http://refhub.elsevier.com/S0304-3975(21)00696-4/bibA1FDF464C77E6777542E6E740287607Bs1
http://refhub.elsevier.com/S0304-3975(21)00696-4/bibEC6EB1A51CBEE19FA1909CBCD63DF589s1
http://refhub.elsevier.com/S0304-3975(21)00696-4/bibEC6EB1A51CBEE19FA1909CBCD63DF589s1
http://refhub.elsevier.com/S0304-3975(21)00696-4/bib963ADB2F0FAAD4C3ABBB131C35E175CDs1
http://refhub.elsevier.com/S0304-3975(21)00696-4/bib31F2C36D1223DB9E9891079E475F19C0s1
http://refhub.elsevier.com/S0304-3975(21)00696-4/bib761F18775D9949E295FFA8DDB1E3091Fs1
http://refhub.elsevier.com/S0304-3975(21)00696-4/bib761F18775D9949E295FFA8DDB1E3091Fs1
http://refhub.elsevier.com/S0304-3975(21)00696-4/bib895412F2D2FD7AD710016781B1830A41s1
http://refhub.elsevier.com/S0304-3975(21)00696-4/bib079655991034D4D8D1CDF14C15053367s1
http://refhub.elsevier.com/S0304-3975(21)00696-4/bib079655991034D4D8D1CDF14C15053367s1
http://refhub.elsevier.com/S0304-3975(21)00696-4/bib15BCC70FF2145C515BA361EBED87301Fs1
http://refhub.elsevier.com/S0304-3975(21)00696-4/bibE760EEC9DE50E539005CF1B67906D3EAs1
http://refhub.elsevier.com/S0304-3975(21)00696-4/bibD93F277ABE213B614519A3DBE5378868s1
http://refhub.elsevier.com/S0304-3975(21)00696-4/bibD93F277ABE213B614519A3DBE5378868s1

Y. Asahiro, J. Jansson, E. Miyano et al. Theoretical Computer Science 900 (2022) 53–78
[22] R.K. Ahuja, T.L. Magnanti, J.B. Orlin, Network Flows - Theory, Algorithms and Applications, Prentice Hall, 1993.
[23] R.K. Ahuja, D.S. Hochbaum, J.B. Orlin, Solving the convex cost integer dual network flow problem, Manag. Sci. 49 (2003) 950–964.
[24] H.N. Gabow, R.E. Tarjan, Faster scaling algorithms for network problems, SIAM J. Comput. 18 (1989) 1013–1036.
[25] M. Blum, R.W. Floyd, V.R. Pratt, R.L. Rivest, R.E. Tarjan, Time bounds for selection, J. Comput. Syst. Sci. 7 (1973) 448–461.
[26] R. Halin, S-functions for graphs, J. Geom. 8 (1976) 171–186.
[27] N. Robertson, P.D. Seymour, Graph minors. III. Planar tree-width, J. Comb. Theory, Ser. B 36 (1984) 49–64.
[28] H.L. Bodlaender, A linear-time algorithm for finding tree-decompositions of small treewidth, SIAM J. Comput. 25 (1996) 1305–1317.
[29] T. Kloks, Treewidth, Computations and Approximations, Lecture Notes in Computer Science, vol. 842, Springer-Verlag, Berlin Heidelberg, 1994.
[30] M. Cygan, J. Nederlof, M. Pilipczuk, M. Pilipczuk, J. ven Rooij, J. Wojtaszczyk, Solving connectivity problems parameterized by treewidth in single

exponential time, in: 52nd Annual IEEE Symposium on Foundations of Computer Science (FOCS 2011), 2011, pp. 150–159.
[31] M. Cygan, F.V. Fomin, Ł. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, S. Saurabh, Parameterized Algorithms, Springer International

Publishing, 2015.
[32] M.R. Fellows, D. Hermelin, F.R.S. Vialette, On the parameterized complexity of multiple-interval graph problems, Theor. Comput. Sci. 410 (2009) 53–61.
[33] M. Dom, D. Lokshtanov, S. Saurabh, Y. Villanger, Capacitated domination and covering: a parameterized perspective, in: M. Grohe, R. Niedermeier (Eds.),

Parameterized and Exact Computation, Springer Berlin Heidelberg, Berlin, Heidelberg, 2008, pp. 78–90.
[34] E. Lawler, Combinatorial Optimization, Dover Publications, 1976.
[35] M.R. Garey, D.S. Johonson, Computers and Intractability, W.H. Freeman, 1979.
78

http://refhub.elsevier.com/S0304-3975(21)00696-4/bibC73E492A9A223BEB95FB791DEF531ACFs1
http://refhub.elsevier.com/S0304-3975(21)00696-4/bib3E404EC57AA5938A9338D62B793D172Fs1
http://refhub.elsevier.com/S0304-3975(21)00696-4/bib995C93E725699F2AAE0EF4389D443B77s1
http://refhub.elsevier.com/S0304-3975(21)00696-4/bibF8455B7874A647AC2C670EA52272B8C3s1
http://refhub.elsevier.com/S0304-3975(21)00696-4/bibDBA3D515768A698C603D21CD08762E5Fs1
http://refhub.elsevier.com/S0304-3975(21)00696-4/bibAEE72FCF176DFEF36586826B4D2D11B2s1
http://refhub.elsevier.com/S0304-3975(21)00696-4/bib26CAF7CAEFA5DC887312D71FA13A8EFDs1
http://refhub.elsevier.com/S0304-3975(21)00696-4/bib91908FAD80BA4EB50336FAD196E049EEs1
http://refhub.elsevier.com/S0304-3975(21)00696-4/bib2D3286131E862FED9982CFEEB8544D9Ds1
http://refhub.elsevier.com/S0304-3975(21)00696-4/bib2D3286131E862FED9982CFEEB8544D9Ds1
http://refhub.elsevier.com/S0304-3975(21)00696-4/bibD27C539899B71F893D321BC8E6CDFA16s1
http://refhub.elsevier.com/S0304-3975(21)00696-4/bibD27C539899B71F893D321BC8E6CDFA16s1
http://refhub.elsevier.com/S0304-3975(21)00696-4/bibDE942A810108B009B573D8FBA7D90279s1
http://refhub.elsevier.com/S0304-3975(21)00696-4/bib22A8CD12FD7E838EF1E9A7498DB34AF2s1
http://refhub.elsevier.com/S0304-3975(21)00696-4/bib22A8CD12FD7E838EF1E9A7498DB34AF2s1
http://refhub.elsevier.com/S0304-3975(21)00696-4/bib52CA519231D69AA4D7985394709BD121s1
http://refhub.elsevier.com/S0304-3975(21)00696-4/bib84EB077BA375F3048297D174D1EC2EF9s1

	Upper and lower degree-constrained graph orientation with minimum penalty
	1 Introduction
	1.1 Notation and problem definition
	1.2 Summary of results
	1.3 Related work
	1.4 Organization of the paper

	2 Polynomial-time algorithms for convex functions
	3 General penalty setting for graphs with bounded treewidth
	3.1 Polynomial-time algorithm for trees
	3.1.1 O(nlog∆)-time algorithm
	3.1.2 O(n)-time algorithm for restricted functions

	3.2 FPT algorithm parameterized by treewidth and the maximum degree
	3.2.1 Overview and notation
	3.2.2 Introduce-vertex node
	3.2.3 Forget node
	3.2.4 Introduce-edge node
	3.2.5 Join node
	3.2.6 Running time

	3.3 W[1]-hardness with respect to treewidth
	The graph H
	Degree constraints
	Penalty function
	Lemmas

	4 Edge-weighted graphs
	4.1 Planar bipartite graphs
	4.2 Graphs with bounded treewidth
	4.3 Stars

	5 Concluding remarks
	Declaration of competing interest
	Acknowledgements
	References

