World Scientific

International Journal of Foundations of Computer Science \\’
www.woridscientific.com

Vol. 18, No. 2 (2007) 217-226
(© World Scientific Publishing Company

ON THE APPROXIMABILITY OF MAXIMUM
AND MINIMUM EDGE CLIQUE PARTITION PROBLEMS

ANDERS DESSMARK, ANDRZEJ LINGAS,

EVA-MARTA LUNDELL and MIA PERSSON*f

Department of Computer Science, Lund University,
Box 118, SE-22100 Lund, Sweden
{andersd,andrzej,emj,mia} @cs.lth.se

and

JESPER JANSSON?

Theoretical Computer Science Group (Yamashita Laboratory),
Dept. of Computer Science and Communication Engineering,
Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
H@tcslab. csce.kyushu-u.ac.jp

Received 13 April 2006
Accepted 23 August 2006
Communicated by Joachim Gudmundsson

ABSTRACT

We consider the following clustering problems: given an undirected graph, partition
its vertices into disjoint clusters such that each cluster forms a clique and the number
of edges within the clusters is maximized (Maz-ECP), or the number of edges between
clusters is minimized (Min-ECP). These problems arise naturally in the DNA clone
classification. We investigate the hardness of finding such partitions and provide ap-
proximation algorithms. Further, we show that greedy strategies yield constant factor
approximations for graph classes for which maximum cliques can be found efficiently.

Keywords: Approximation algorithm; clustering; clique partition; inapproximability;
DNA clone classification.

1. Introduction

The correlation clustering problem has gained a lot of attention recently [1, 2, 3, 5, 7,
15]; given a complete graph with edges labeled “+4-”(similar) or “—” (dissimilar), find
a partition of the vertices into subsets called clusters that agrees as much as possible
with the edge labels, i.e., that maximizes the agreements (the number of “+” edges
inside clusters plus the number of “—” edges between clusters) or that minimizes
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the disagreements (the number of “—
edges between clusters).

In this paper, we consider a special variant of the correlation clustering problem
in which there are no negative edge labels. Instead, we omit an edge between
two vertices of a dissimilar pair. Furthermore, we require an edge between each
pair of vertices in a cluster, i.e, every cluster must form a clique. We consider
the following two combinatorial optimization problems. The mazimum edge clique
partition problem (Max-ECP for short) aims to find a partition of the vertices into
cliques such that the total number of edges within all those cliques is maximized.
The related minimization version of this problem, the minimum edge clique partition
problem (Min-ECP for short), is defined analogously with the exception that the
total number of edges between the cliques is minimized.

The Maz-ECP and Min-ECP problems first came to our attention in the set-
ting of DNA clone classification [9]. In order to characterize cDNA and ribosomal
DNA (rDNA) gene libraries, the powerful DNA array based method oligonucleotide
fingerprinting is commonly used (see, e.g., [6, 10, 16, 17]).

The problem of clustering binarized fingerprint data such that the number of
clusters is minimized was first studied and motivated in [8]. In [9], Figueroa et al.
propose new approaches of partitioning binarized fingerprints into disjoint clusters
in order to maximize the number of pairs of similar fingerprints lying inside the
clusters (equivalently, minimize the number of pairs of similar fingerprints lying
in different clusters). These problems can hence be viewed as the Maz-ECP and
Min-ECP problems where the vertices are the binarized fingerprints and the edges
between them indicate their similarity.

” edges inside clusters plus the number of “+”

1.1. Related results

The well studied correlation clustering problem was first introduced for complete
graphs by Bansal et al. [2]. Tt has applications in many areas (see, e.g., [2, 5]). As
noted in [2], the problem of maximizing agreements and minimizing disagreements
are equivalent at optimality but differ from the point of view of approximation. In
[2], it was established that these problems are NP-hard for complete graphs, and a
PTAS was given in the case of maximizing agreements, whereas a constant factor
approximation is given in the case of minimizing disagreements. This constant
factor approximation was later improved by Charikar et al. [3] where a factor 4
approximation algorithm is given for complete graphs based on linear programming
relaxation. The latter problem was also proved to be APX-hard.

The problems of maximizing agreements and minimizing disagreements were
later generalized to include non-necessarily complete graphs with edge weights
in [3]. A factor 0.7664 approximation algorithm based on the rounding of a semidef-
inite programming relaxation for the problem of maximizing agreements for general
weighted graphs was given in [3], but this factor was later improved to 0.7666 by
Swamy [15]. As for the problem of minimizing disagreements, a factor O(logn) ap-
proximation algorithm for general weighted graphs was proposed (independently)
in [3], [5], and [7]. Recently, Ailon et al. [1] have provided a randomized expected
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3-approximation algorithm for minimizing disagreements. In the case of weighted
complete graphs, which satisfy probability constraints (w:; +w;; = 1 for edge (1, 7))
and triangle inequality constraints (w,, < w;; + w]—k) on the edges, they have pro-
vided a factor 2 approximation algorithm.

The APX-hardness of the unweighted version of Min-ECP has been established
by Shamir et al. [14]. They have also presented results for the case when a solution
must contain exactly p clusters; the so restricted problem is solvable in polynomial
time for p = 2 but NP-complete for p > 2.

1.2. Our results

In this paper, we investigate the approximability of Maz-ECP and Min-ECP. Specif-
ically, we prove that Maz-ECP on general, undirected graphs is hard to approxi-
mate within a factor of n1=°(), unless NP C ZPTIME(2(°sm ") where n denotes
the number of vertices in the input graph. On the other hand, we give an n-
approximation algorithm running in polynomial time for this problem®. In the case
of Min-ECP we provide a polynomial-time O(logn)-approximation algorithm for
undirected graphs with non-negative weights. We also prove that this problem is
NP-hard to approximate within 1 + ﬁ — ¢, for any ¢ > 0. We further consider
the greedy heuristic and show that it yields a 2-approximation for both Maz-ECP
and Min-ECP, under the assumption that the largest clique can be determined
in polynomial time. Thus, the greedy method could be applied in practice only
to graph classes for which maximum cliques can be found efficiently, for instance
chordal graphs, line graphs and circular-arc graphs (cf. [8]). We also note that
these bounds are actually tight. Table 1 summarizes our contributions.

Table 1. Summary of our results on the polynomial-time approximability of
Maz-ECP and Min-ECP. The lower bounds listed in the first two rows of
the table show inapproximability results for Maz- ECP and weighted Min-ECP
whereas the lower bounds shown in the last two rows concern the worst-case
behavior of the greedy method.

| Problem | Lower Bound | Upper Bound |
Max-ECP nlt—om n
weighted Min-ECP 1+ g5 — ¢ O(logn)
Greedy Max-ECP 2 2
Greedy Min-ECP 2 2

Qur paper is structured as follows. We give more formal definitions of Mazx-
ECP and Min-ECP in Section 2. In Section 3, we provide a factor n approximation
algorithm for Maez-ECP. In Section 4, we give a lower bound on approximability
of Maz-ECP. In Section 5, we provide a polynomial-time O(log n}-approximation
algorithm for the weighted version of Min-ECP and in section 6, we derive a lower
bound on approximability of Min-ECP. Finally, in Section 7, we consider the greedy

*More precisely, our algorithm is a k-approximation algorithm, where k is the number of vertices
in the largest clique in the input graph.
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algorithm for Maz-ECP and Min-ECP and prove that it yields a factor 2 approxi-
mation.

2. Preliminaries

The formal definition of Maz-ECP and Min-ECP is as follows.

Definition 1 Let G = (V, E) be an undirected graph and let n = |V|. The problem
of maximum edge clique partition (Max-ECP for short) is to find a partition of
V into disjoint subsets Vi, ..., Vyn such that for each 1 < i < m, any two vertices
in V; share an edge and the total number of edges within the subsets Vi, ..., Vy, is
mazximized.

The problem of minimum edge clique partition (Min-ECP for short) is defined
analogously to Max-ECP with the exception that the total number of edges between
the subsets Vi, ..., Vi, is minimized.

The subsets Vi,..., V,, in the definition above are referred to as clusters, and
any partition of V into clusters is a clustering of V. For Maz-ECP and Min-ECP,
the score of a clustering is defined as the total number of edges within the clusters
and the total number of edges betwen the clusters, respectivley.

Note that an exact solution to Maz-ECP is an exact solution to Min-ECP and
vice versa.

The example shown in Figure 1 demonstrates two feasible solutions to Maz-
ECP and Min-ECP. As depicted in Figure 1(a), the total number of edges inside
the clusters is 18, hence the solution to Maxz-FECP has a total score of 18. On the
contrary, the total number of edges outside the clusters in Figure 1(a) is 12, hence
the solution to Min-ECP has a total score of 12. The optimal clustering is depicted
in Figure 1(b), with the total score of 24 for Maz-ECP and the total score of 6 for
Min-ECP.

(b)

Fig. 1. A feasible solution and the optimal solution to an instance of Maz-ECP and Min-ECP.

3. A Polynomial-Time n-Approximation Algorithm for Max-ECP

The Maz-ECP problem is NP-hard and even hard to approximate within a factor
n1~00/Uogn)") for some constant v, as proved in the next section. On the positive
side, we prove in this section that Maz-ECP admits a simple polynomial-time, factor
k approximation algorithm, where k is the number of vertices in the largest clique
in G. The approximation algorithm works as follows: Find a maximum matching
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in G and output it and the singletons containing the vertices not covered by the
matching as a clique partition.

Theorem 1 Let k be the number of vertices in the largest clique in G. Max-ECP
can be approrimated within a factor of k in polynomial time.

Proof. Denote by OPT(G) and APPR(G) the total number of edges within
cliques in an optimal solution for Max-ECP on G and in the solution returned by
the approximation algorithm described above, respectively. Let (Vi,Va,..., Vi)
be an optimal solution for Max-ECP on G. There is a matching in G which, for
i = 1,...,m, includes at least % edges from the clique induced by V;. Since
k > |V;| for all 4 = 1,...,m, such a matching includes at least a fraction % of the
edges from each of the m cliques induced by Vi, Va,..., V,,. Hence, APPR(G) >
OPT(QG) /k holds. |

4. A Lower Bound on the Approximability of Max-ECP

The maximum clique problem is known to not admit an approximation within
nl=O/(ogn)™) for some constant v unless NP C ZPTIME(Z(IOg”)O(l)) [12]. It
follows that the aforementioned inapproximability bound holds even if restricted to
graphs on n vertices whose largest clique consists of at least n'~® vertices, where
x =0(1/(logn)7). Below, consider any such graph G. For the sake of contradiction,
suppose there exists an n'~3%-approximation algorithm for Maz-ECP. Let C be the
clustering obtained by running this approximation algorithm on G, and let & be the
size of the largest clique in G, i.e., n'~® < k < n by the assumption above. First
observe that an optimal solution to Maz-ECP for G has at least (’2“) edges, so C has
at least k(k —1)/(2n!=3%) edges. On the other hand, C contains at most n(c—1)/2
edges in total, where ¢ is the size of the largest cluster in C (to see this, double-
count the total number of edges in C by adding up the number of neighbors in C
of each vertex; clearly, the latter sum is upper-bounded by the number of vertices
multiplied by ¢ — 1). Thus, we get the inequality k(k — 1)/(2n!73%) < n(c —1)/2,
which together with & > n'~% yields ¢ > n® for large enough n. This means that
by selecting the largest cluster in C, we would always obtain a clique in G of size at
least 1/n'~* times n, which is at least 1/n'~® times the size of the largest clique
in G. Hence, this would yield an n'~® approximation algorithm for the maximum
clique problem on G, contradicting [12]. We have proved the following theorem.
Theorem 2 Unless NP C ZPTIME(Z(log”)O(l)), the Maz-ECP problem does not
admit an n'~C0/1en)) gnprozimation, for some constant .

5. A Polynomial-Time O(log n)-Approximation Algorithm for Weighted
Min-ECP

Min-ECP can be approximated within a factor of O(logn) in polynomial time, even
for edge-weighted graphs with arbitrary non-negative weights, as follows.

Let G = (V, E) be a given instance of Min-ECP in which each edge ¢ has a
non-negative weight w(e). Define W = max.cg w(e). Construct an edge-weighted,
edge-labeled, complete graph G' = (V, E’), where each e € E’ is labeled by '+’ and
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assigned weight w(e) if e € E, or labeled by '—' and assigned weight W - n? log® n if
e ¢ E. Run any one of the polynomial-time O(log n)-approximation algorithms for
Minimum Disagreement Correlation Clustering for weighted graphs [3, 5, 7] on G’
to obtain a clustering C’ for V, and return the set S of subgraphs of G induced
by C'.

Lemma 1 For any two vertices u,v € V which are not joined by an edge in G,
u and v do not belong to the same cluster in C'.

Proof. First note that partitioning the vertex set into singleton clusters would
yield a feasible solution whose disagreement score is at most W - (g) Since the
disagreement score of an optimal solution is at most this much, the disagreement
score for C’ is O(W -n?logn). Now suppose that u and v belong to the same cluster
in C’. Then the disagreement score for C’ must be at least W - n?log?n, which
contradicts the above. o

By Lemma 1, the vertices from each cluster in C’ form a clique in G. Since
the clusters in €’ are disjoint, S is a partition of G into cliques, which proves the
correctness of the method.

Next, we consider the approximation ratio. For any partition M of G into
cliques, denote by ECP(M) the ECP score for M, i.e., the sum of all weights of
edges whose two endpoints belong to different cliques in M. Similarly, for any
clustering M’ of G', let Disagree(M’) be the disagreement correlation clustering
score for M’. Finally, MinECP(G) and MinDisagree(G’) denote the minimum
possible scores of EC'P for G and Disagree for G°, respectively.

Lemma 2 ECP(S) is at most O(logn) times MinECP(G).

Proof. Let M be a partition of G into cliques which minimizes FCP, and let
M’ be the clustering of G’ induced by the cliques in M. Then, since only edges la-
beled by '+’ contribute to Disagree(M’), we obtain MinECP(G) = ECP(M) =
Disagree(M’) > MinDisagree(G’).

Next, observe that ECP(S) is equal to Disagree(C’) because only edges labeled
by '+’ contribute to Disagree(C’) by Lemma 1. Moreover, Disagree(C’) is at most
O(logn) times MinDisagree(G'). It follows that ECP(S) is at most O(log ) times
MinECP(G). O

To summarize:

Theorem 3 Weighted Min-ECP can be approzimated within o factor of O(logn)
in polynomial time.

6. A Lower Bound for Min-ECP

Shamir et al. have established the APX-hardness of unweighted Min-ECP by a
reduction from a special variant of set cover in [14]. It follows by [14] that the
Min-ECP problem cannot have a polynomial-time approximation scheme unless
P=NP. However, no explicit lower bound on the approximation factor for Min-ECP
achievable in polynomial time is known in the literature.

In this section, we present a new reduction from the so called three way cut
problem to the weighted Min-ECP problem which yields an explicit lower bound
on the approximation factor.
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The problem of three way cut (3WC) is to find a minimum number of edges
whose removal disconnects three distinguished vertices.

Let A and B be two optimization problems (maximization or minimization). A
linearly reduces [4] to B if there are two polynomial time algorithms A and g, and
constants «, [ > 0 such that

e For an instance a of A, algorithm h produces an instance b = h{a) of B such
that the cost of an optimal solution for b, opt(b), is at most « - opt{a), and

e For a, b = h(a), and any solution y of b, algorithm ¢ produces a solution z of
a such that |cost(z) — opt(a)| < B|cost(y) — opt(b)|.

By [13], if A linearly reduces to B and B has a polynomial-time 1+ ¢ approxima-
tion algorithm then A has a polynomial-time (1 4+ af¢) approximation algorithm.

Max-Cut is the problem of finding, for an undirected graph with vertex set V,
a partition Vi, V2 of V such that the number of edges {u, v} where {u,v} N Vi and
{u,v} N V2 are both nonempty is maximized.

In [4], Dahlhaus et al. presented a linear reduction of the Max-Cut problem to
3WC in order to prove that 3WC is APX-hard. Since Max-Cut is APX-hard [11],
the APX-hardness of 3WC follows. In the aforementioned reduction a@ = 56 and
B =1 [4]. In fact, o can be decreased to 55 by the proof of Theorem 5 in [4]®. On
the other hand, Hastad has shown that for any € > 0, it is NP-hard to approximate
Max-Cut within 1+ & — ¢ [11]. Hence, we obtain the following lemma.

Lemma 3 For any € > 0, it is NP-hard to approximate SWC within 1 + glo — €.

To reduce 3WC to weighted Min-ECP, fix an arbitrary § > 0, and transform
any given instance of 3WC on n vertices to an instance of Min-ECP as follows:

o Assign the weight 1 to each edge in the instance.

e For each non-adjacent pair u, v of vertices in the instance insert an edge of
weight §/n2.

e For each distinguished vertex s;, ¢ = 1,2,3, add an auxiliary vertex u; and
make it adjacent with each vertex of the instance. Assign the weight n? to
each of the three edges (s;,u;) and the weight §/n? to the remaining edges
incident to the vertices u;, 1 = 1,2, 3.

Figure 2 demonstrates how the transformation from an instance of 3WC to an
instance of Min-ECP works.

In this figure, note that a dashed line between a pair of vertices indicates an
edge with weight 6/n2.

Note that in an optimal Min-ECP solution to the transformed instance each of
the pairs s;,u;, ¢ = 1,2,3 belongs to a separate clique and the total weight of the
edges outside all the cliques in the optimal solution is between cut and cut 4§ where
cut stands for the value of an optimal solution to the instance of 3WC.

PIn the proof of Theorem 5 in [4], observe that OPT3wc(f(G)) = 56 - % — K < 56-
OPTMaw—Cut(G) _OPTMaw—Cut(G) = 55- OPTMaw—Cut(G)'
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Fig. 2. Transformation from 3WC to Min-ECP.

Suppose that for some ¢ > 0, weighted Min-ECP could be approximated in
polynomial time within a factor of f where f <1+ glo — ¢. Then using the set of
edges between the three cliques in an approximate solution for weighted Min-ECP
as an approximate solution for 3WC would yield a three-way cut for the original
graph of cardinality at most f-(cut+6) < (f+f-6)-cut. By setting 6§ = ﬁ%ﬁ’
we could approximate 3WC in polynomial time within 1 4 % —¢/2. We obtain a
contradiction with Lemma 3. Hence, we obtain the following theorem.

Theorem 4 For any e > 0, it is NP-hard to approrimate weighted Min-ECP within
1+ glo — €.

7. Greedy Method for Max-ECP and Min-ECP

The greedy strategy applies naturally to the Maz-ECP and Min-ECP problems: it-
eratively pick the largest clique until all elements have been partitioned into disjoint
clusters. However, the problem of finding a maximum clique is itself known to be
extremely hard to approximate [12]. Thus, the greedy method could be applied in
practice only to graph classes for which maximum cliques can be found efficiently
(cf. [8]).

Theorem 5 The greedy method yields a 2-approzimation for Max-ECP and Min-
ECP.

Proof. Consider an optimal solution to the Maz-ECP problem (or, the Min-
ECP problem, respectively) and let us assume that it consists of m cliques. Let
FE; be the set of edges in the m cliques, and let E, be the set of edges of graph
G outside these cliques. Let C be the largest clique, say on k vertices, picked by
the greedy method. Suppose first that the intersection of C' with any clique in the
optimal partition is a singleton or empty. Thus, in a way, the at most k(k — 1)
edges in E; are replaced with the k(k — 1)/2 edges in C (or, the k(k — 1)/2 edges
in C N E, with at most k(k — 1) new edges outside the cliques, respectively). In
the remaining case, if the intersection of C with any of the cliques in the optimal
partition contains more than one vertex, less than k(k — 1) edges in E; are replaced
by the k(k — 1)/2 edges in C (or, the k(k — 1)/2 edges in C' N E, are replaced by
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less than k(k — 1) new edges outside the cliques, respectively). By iterating the
argument, we obtain the theorem. o

L ~ 2 ~ L ~
\N \N \N
N N AY
N N oo N
N \ ~ \ N A
9, “®, ~®,
1 2 n
Fig. 3. An example illustrating the worst-case performance of the greedy strategy for Maz-ECP
and Min-ECP.

The example shown in Figure 3 demonstrates that our upper bound on the
approximation factor of the greedy method for Maz-ECP is tight. Simply, the
greedy method may produce n 2-cliques and 2n 1-cliques (singletons) yielding n
edges whereas the optimal clique partition consists of 2n 2-cliques yielding 2n edges.

Figure 3 is also a tight example for greedy Min-ECP. Note that the number of
edges between cliques will be 2n in the approximate solution, whereas the optimum
contains n edges between the 2n 2-cliques.

8. Final Remarks

By using rather maximum weight matching than maximum cardinality matching
we can easily generalize our n-approximation method for Maz-ECP to include edge
weights.

It is an interesting open problem whether or not the gap between the upper and
lower bounds on approximability of Min-ECP could be tightened.

A careful reader might observe that our approximation hardness result for Maz-
ECP does not hold for the graph classes for which our greedy method could be
applied practically. The complexity and approximation status of Maz-FCP and
Min-ECP for the aforementioned graph classes are interesting open problems.
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