
Theoretical Computer Science 883 (2021) 83–98
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

New and improved algorithms for unordered tree inclusion ✩

Tatsuya Akutsu a,∗,1, Jesper Jansson b,c, Ruiming Li a, Atsuhiro Takasu d,
Takeyuki Tamura a,2

a Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
b Department of Computing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
c Graduate School of Informatics, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
d National Institute of Informatics, Chiyoda-ku, Tokyo, 101-8430, Japan

a r t i c l e i n f o a b s t r a c t

Article history:
Received 20 April 2020
Received in revised form 1 June 2021
Accepted 13 June 2021
Available online 17 June 2021
Communicated by S. Saurabh

Keywords:
Tree inclusion
Unordered trees
Parameterized algorithms
Dynamic programming

The tree inclusion problem is, given two node-labeled trees P and T (the “pattern tree” and
the “target tree”), to locate every minimal subtree in T (if any) that can be obtained by
applying a sequence of node insertion operations to P . Although the ordered tree inclusion
problem is solvable in polynomial time, the unordered tree inclusion problem is NP-hard.
The currently fastest algorithm for the latter is a classic algorithm by Kilpeläinen and
Mannila from 1995 that runs in O (d22dmn) time, where m and n are the sizes of the
pattern and target trees, respectively, and d is the degree of the pattern tree. Here, we
develop a new algorithm that runs in O (d2dmn2) time, improving the exponential factor
from 22d to 2d by considering a particular type of ancestor-descendant relationships that is
suitable for dynamic programming. We also study restricted variants of the unordered tree
inclusion problem.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Tree pattern matching and measuring the similarity of trees are fundamental problem areas in theoretical computer
science. One intuitive and previously well-studied measure of the similarity between two rooted, node-labeled trees T1
and T2 is the tree edit distance, defined as the length of a shortest sequence of node insertion, node deletion, and node
relabeling operations that transforms T1 into T2 [9]. An important special variant of the problem of computing the tree
edit distance known as the tree inclusion problem is obtained when the only allowed operations are node insertion oper-
ations on T1. Here, we assume the following formulation of the problem: given a “pattern tree” P and a “target tree” T ,
locate every minimal subtree in T (if any) that can be obtained by applying a sequence of node insertion operations
to P . (Equivalently, one may define the tree inclusion problem so that only node deletion operations on T are allowed.)
In 1995, Kilpeläinen and Mannila [19] proved that the tree inclusion problem for unordered trees is NP-hard, but solvable
in polynomial time when the degree of the pattern tree is bounded from above by a constant. The running time of their
algorithm is O (d · 22d · mn) = O ∗(22d) = O ∗(4d), where m = |P |, n = |T |, and d is the degree of P . Throughout this article,

✩ A preliminary conference version of this article appeared as [5].

* Corresponding author.
E-mail addresses: takutsu@kuicr.kyoto-u.ac.jp (T. Akutsu), jesper.jansson@polyu.edu.hk (J. Jansson), rmli@kuicr.kyoto-u.ac.jp (R. Li), takasu@nii.ac.jp

(A. Takasu), tamura@kuicr.kyoto-u.ac.jp (T. Tamura).
1 Partially supported by JSPS KAKENHI #18H04113.
2 Partially supported by JSPS KAKENHI #25730005.
https://doi.org/10.1016/j.tcs.2021.06.013
0304-3975/© 2021 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.tcs.2021.06.013
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2021.06.013&domain=pdf
mailto:takutsu@kuicr.kyoto-u.ac.jp
mailto:jesper.jansson@polyu.edu.hk
mailto:rmli@kuicr.kyoto-u.ac.jp
mailto:takasu@nii.ac.jp
mailto:tamura@kuicr.kyoto-u.ac.jp
https://doi.org/10.1016/j.tcs.2021.06.013

T. Akutsu, J. Jansson, R. Li et al. Theoretical Computer Science 883 (2021) 83–98
Table 1
The computational complexity of some special cases of the unordered tree inclusion
problem. For any tree T , h(T) denotes the height of T and occ(T) the maximum
number of times that any leaf label occurs in T . As indicated in the table, either
all nodes or only the leaves are labeled (the former is harder since it generalizes
the latter). Note that the fourth case is NP-hard as it generalizes the first two. The
algorithm referred to in the last case is randomized.

Restriction Labels on Complexity Result

h(T) = 2, h(P) = 1, all nodes NP-hard Corollary 1
occ(T) = 3, occ(P) = 1

h(T) = 2, h(P) = 2, leaves NP-hard Theorem 2
occ(T) = 3, occ(P) = 1

occ(T) = 2, occ(P) = 1 all nodes P Theorem 3

occ(T) = 3, occ(P) = 1 all nodes O ∗(1.619d) time Theorem 4

h(T) = 2, h(P) = 1 all nodes O ∗(1.883d) time Theorem 5

the notation “O ∗(. . .)” means “O (. . .)” multiplied by some function that is a polynomial in m and n. E.g., “O ∗(22d)” means
“O (22d · poly(m, n))”.

Our main contribution is a new algorithm for solving the unordered tree inclusion problem more efficiently. More
precisely, its time complexity is O (d · 2d · mn2) = O ∗(2d), which yields the first improvement in over twenty years. Our
bound is obtained by introducing the simple yet useful concept of minimal inclusion and considering a particular type of
ancestor-descendant relationships that turns out to be suitable for dynamic programming. Next, we analyze the computa-
tional complexity of unordered tree inclusion for some restricted cases; see Table 1 for a summary of the new findings. We
give a polynomial-time algorithm for the case where the leaves of P are distinctly labeled and every label appears at most
twice in T , and an O ∗(1.619d)-time algorithm for the NP-hard case where the leaves in P are distinctly labeled and each
label appears at most three times in T . Both of these algorithms effectively utilize some techniques from a polynomial-time
algorithm for 2-SAT [8]. (Note that the preliminary version of this paper [5] contained a slower algorithm for the latter case
running in O ∗(1.8d) time.) Finally, we derive a randomized O ∗(1.883d)-time algorithm for the case where the heights of P
and T are one and two, respectively, via a non-trivial combination of our O ∗(2d)-time algorithm, Yamamoto’s algorithm for
SAT [31], and color-coding [7].

1.1. Related results

In general, tree edit distance-related problems are computationally harder for unordered trees than for ordered trees.
A comprehensive summary of the many results that were already known in 2005 can be found in the survey by Bille [9].
Below, we briefly mention a few of these historical results along with some more recent ones.

When T1 and T2 are ordered trees, the tree edit distance can be computed in polynomial time. The first algorithm to
do so, invented by Tai [28] in 1979, ran in O (n6) time, where n is the total number of nodes in T1 and T2. The time
complexity was gradually improved upon until Demaine et al. [15] thirty years later presented an O (n3)-time algorithm,
which was proved to be worst-case optimal under the conjecture that there is no truly subcubic time algorithm for the
all-pairs-shortest-paths problem [12]. Pawlik and Augsten [25] developed a robust algorithm whose asymptotic complexity
is less than or equal to the complexity of the best competitors for any input instance. In another line of research, since
even O (n3) time is too slow for similarity search and so-called join operations in XML databases, the focus has been
on approximate methods. Garofalakis and Kumar [17] gave an algorithm for embedding the tree edit distance in a high-
dimensional L1-norm space with a guaranteed distortion, and recently, Boroujen et al. provided an O (n2)-time (1 + ε)-
approximation algorithm [11].

In contrast, the tree edit distance problem is NP-hard for unordered trees [34]. It is MAX SNP-hard even for binary
trees in the unordered case [33], which implies that it is unlikely to admit a polynomial-time approximation scheme. Some
exponential-time algorithms for this problem variant were developed by Akutsu et al. [3,6]. As for parameterized algorithms,
Shasha et al. [27] gave an O (4�1+�2 · min(�1, �2) · mn)-time algorithm for the problem, where �1 and �2 are the numbers of
leaves in T1 and T2, respectively. Taking the tree edit distance (denoted by k) to be the parameter instead, an O ∗(2.62k)-
time algorithm for the unit-cost edit operation model was developed by Akutsu et al. [4].

As mentioned above, Kilpeläinen and Mannila [19] proved that the unordered tree inclusion problem is NP-hard and gave
an algorithm that runs in O (d ·22d ·mn) time, where m = |P |, n = |T |, and d is the degree of P . Bille and Gørtz [10] presented
a fast algorithm for the case of ordered trees, and Valiente [30] gave a polynomial-time algorithm for a constrained version
of the unordered case. Piernik and Morzy [26] introduced a similar problem for ordered trees and developed an efficient
algorithm. Finally, we remark that the special case of the tree inclusion problem in which node insertion operations are
only allowed to insert new leaves corresponds to a subtree isomorphism problem, which can be solved in polynomial time
even for unordered trees [23].
84

T. Akutsu, J. Jansson, R. Li et al. Theoretical Computer Science 883 (2021) 83–98
1.2. Applications

Research in tree pattern matching has led to algorithms used in numerous practical applications over the years. Some
examples include fast methods for querying structured text databases, document similarity search, natural language process-
ing, compiler optimization, automated theorem proving, comparison of RNA secondary structures, assessing the accuracy of
phylogenetic tree reconstruction methods, and medical image analysis [10,14,19,30]. Recently, due to the rapid advance of
AI technology, matching methods for knowledge bases have become increasingly important. In particular, researchers in the
database community have enhanced the basic subtree similarity search technique to search a knowledge base of hierarchically
structured information under various definitions of similarity; e.g., Cohen and Or [14] presented a general subtree similarity
search algorithm that is compatible with a wide range of tree distance functions, and Chang et al. [13] proposed a top-k
tree matching algorithm. In the Natural Language Processing (NLP) field, researchers are applying deep learning techniques
to NLP problems and developing algorithms for processing parsing/dependency trees [22].

As an example of the versatility of tree comparison algorithms, three different tree pattern matching applications in-
volving glycan data from the KEGG database [18], weblogs data [32], and bibliographical data from ACM, DBLP, and Google
Scholar [21] were all expressed in terms of an optimization version of the unordered tree inclusion problem named the
extended tree inclusion problem and studied experimentally by Mori et al. [24]. Note that for bibliographic matching, a single
article usually has at most two or three versions (e.g., preprint, conference version, and journal version), and it is very
rare that a single article includes two co-authors with exactly the same family and given names. Therefore, two reasonable
assumptions when modeling bibliographic matching as the tree inclusion problem are that the leaves of the pattern tree P
are distinctly labeled and that each label occurs at most c times in the target tree T for some bounded value of c.

Another important restriction is on the height of trees. In entity resolution, some authors have applied tree matching
where entities are usually represented by a shallow tree. Mori et al. [24] represented a bibliographic record by a tree of
height 2 and linked identical records in two different bibliographic databases. Konda et al. [20] evaluated their entity reso-
lution system by using various datasets. Movie records from IMDb3 used in their experiment, for example, were extracted
from IMDb web pages in HTML format. The fields of the movie record are included in a subtree of height 7 in the web page.
Since the HTML code contains many tags for rendering the page, the height of trees required for the movie record is much
lower. Apart from these practical viewpoints, it is of theoretical interests to study restricted cases because the unordered
tree inclusion problem remains NP-hard even in considerably restricted cases, as shown in Table 1.

2. Definitions and notation

From here on, all trees are assumed to be rooted, unordered, and node-labeled. Let T be a tree. We use r(T), h(T),
and V (T) to denote the root of T , the height of T , and the set of nodes in T , respectively. For any v ∈ V (T), �(v) is the
node label of v and Chd(v) is the set of children of v . Furthermore, Anc(v) and Des(v) are the sets of strict ancestors and
strict descendants of v , respectively (i.e., v itself is excluded from these sets), whereas AncDes(v) = Anc(v) ∪ Des(v) ∪{v} is
the set of all ancestors of v , all descendants of v , and v . Also, T (v) denotes the subtree of T induced by Des(v) ∪ {v}.

A node insertion operation on a tree T is an operation that creates a new node v having any label and then: (i) attaches v
as a child of some node u currently in T and makes v become the parent of a (possibly empty) subset of the children
of u instead of u, so that u is no longer their parent; or (ii) makes the current root of T become a child of v and lets v
become the root of T instead. For any two trees T1 and T2, we say that T1 is included in T2 if there exists a sequence of
node insertion operations that, when applied to T1, yields T2. Equivalently, T1 is included in T2 if T1 can be obtained by
applying a sequence of node deletion operations (defined as the inverse of a node insertion operation) to T2.

A mapping between two trees T1 and T2 is a subset M ⊆ V (T1) × V (T2) such that for every (u1, v1), (u2, v2) ∈ M , it
holds that: (i) u1 = u2 if and only if v1 = v2; and (ii) u1 is an ancestor of u2 if and only if v1 is an ancestor of v2. Condition
(i) states that each node appears at most once in M , and condition (ii) states that ancestor-descendant relations must be
preserved. A mapping M between T1 and T2 such that |M| = |V (T1)| and u and v have the same node label for every
(u, v) ∈ M is called an inclusion mapping (see Fig. 1 for an example). It is known that T1 is included in T2 if and only if
there exists an inclusion mapping between T1 and T2 [28]. We write T1(u) ⊂ T2(v) if T1(u) is included in T2(v) under the
additional condition that there exists an inclusion mapping that maps u to v . For any two trees T1 and T2, T1 ∼ T2 means
that T1 is isomorphic to T2, in the sense that node labels have to be preserved.

In the tree inclusion problem, the input is two trees P and T , also referred to as the “pattern tree” and the “target tree”,
and the objective is to locate every minimal subtree of T that includes P , where T (v) is called a minimal subtree if it
minimally includes P , the definition of which is given below. For any instance of the tree inclusion problem, we define
m = |V (P)| and n = |V (T)|, and let d denote the degree of P , i.e., the maximum number of children of any node in P . We
assume w.l.o.g. (without loss of generality) that m ≤ n because otherwise P cannot be included in T . The following concept
plays a key role in our algorithm (see Fig. 1 for an illustration).

3 IMDb: Ratings, reviews, and where to watch the best movies: https://www.imdb .com.
85

https://www.imdb.com

T. Akutsu, J. Jansson, R. Li et al. Theoretical Computer Science 883 (2021) 83–98
Fig. 1. An example of unordered tree inclusion. Here, P ⊂ T holds by an inclusion mapping M = {(u1, v1), (u2, v2), (u3, v5), (u4, v3), (u5, v8)}. P (u2) ⊂
T (v2), P (u2) ⊂ T (v6), and P (u2) ⊂ T (v7) hold as well. Furthermore, P ≺ T , P (u2) ≺ T (v2), and P (u2) ≺ T (v7) hold, but P (u2) ≺ T (v6) does not hold.

Definition 1. For any instance of the tree inclusion problem and any u ∈ V (P) and v ∈ V (T), T (v) is said to minimally
include P (u) (written as P (u) ≺ T (v)) if P (u) ⊂ T (v) holds and there is no v ′ ∈ Des(v) such that P (u) ⊂ T (v ′).

We may simply use P and T in place of P (u) and T (v) if u and v are the roots of P and T , respectively. Locating every
minimal subtree is reasonable because P (u) ⊂ T (v ′) holds for all ancestors v ′ of v if P (u) ≺ T (v) holds.

Proposition 1. Given any instance of the tree inclusion problem and any u ∈ V (P) and v ∈ V (T) with Chd(u) = {u1, . . . , ud}, it holds
that P (u) ⊂ T (v) if and only if the following conditions are satisfied:

(1) �(u) = �(v);
(2) v has a set of descendants D(v) = {v1, . . . , vd} such that vi /∈ Des(v j) for every i �= j; and
(3) there exists a bijection φ from Chd(u) to D(v) such that P (ui) ≺ T (vi) holds for every i ∈ {1, 2, . . . , d}.

Proof. Suppose that Conditions (1)-(3) are satisfied. Condition (3) implies that there exists an injection mapping φ′ between
the forest induced by u1, . . . , ud and their descendants and the forest induced by v1, . . . , vd and their descendants such
that φ′(ui) = vi . Let φ′′ = φ′ ∪ {(u, v)}. Since u1, . . . , ud are the children of u and v1, . . . , vd are descendants of v , φ′′ is an
inclusion mapping and thus P (u) ⊂ T (v) holds.

Conversely, suppose that P (u) ⊂ T (v) holds, which means that there exists an inclusion mapping φ from P (u) to T (v)

with φ(u) = v . Let wi = φ(ui) for i = 1, . . . , d. Then, wi /∈ Des(w j) holds for every i �= j because φ is an inclusion mapping.
Furthermore, for each wi , there must exist vi ∈ {wi} ∪ Des(wi) such that P (ui) ≺ T (vi) holds with an inclusion mapping
φi from P (ui) to T (vi) satisfying φi(ui) = vi . Note that vi /∈ Des(v j) holds for every i �= j because wi /∈ Des(w j) holds for
every i �= j. Let φ′ = {(u, v)} ∪φ1 ∪ . . . φd . Condition (1) is satisfied because (u, v) ∈ φ′ . Here we let D(v) = {v1, . . . , vd}. Then,
Condition (2) is satisfied as stated above. Condition (3) is also satisfied because φ′(ui) = vi holds for all i = 1, . . . , d. �

Proposition 1 essentially states that the children of u must be mapped to descendants of v that do not have ancestor-
descendant relationships. Since P is included in T if and only if there exists a v ∈ V (T) with P ≺ T (v), we need to
determine if P (u) ≺ T (v), assuming that whether P (u j) ≺ T (vi) holds is known for all (u j, vi) with u j ∈ Des(u) ∪ {u},
vi ∈ Des(v) ∪ {v}, and (u j, vi) �= (u, v). This assumption is satisfied if we apply a dynamic programming procedure to
determine if P ≺ T (v), using an O (mn) size table and following any partial ordering on (u, v)s in V (P) × V (T) such that
(u, v) precedes (u′, v ′) if and only if u′ ∈ Des(u) ∪ {u}, v ′ ∈ Des(v) ∪ {v}, and (u′, v ′) �= (u, v).

Proposition 2. Suppose that P (u) ≺ T (v) can be determined in O (f (d, m, n)) time, assuming that whether P (u j) ≺ T (vi) holds is
known for all pairs (u j, vi) such that (u j, vi) ∈ V (P (u)) × V (T (v)) \ {(u, v)}. Then the unordered tree inclusion problem can be
solved in O (f (d, m, n) · mn) time by using a bottom-up dynamic programming procedure.

3. An O (d ·2d ·mn2)-time algorithm

The core of Kilpeläinen and Mannila’s algorithm [19] for unordered tree inclusion is the computation of a set S(v)

for each node v ∈ V (T), also called the match system for target node v . In their paper, S(v) was originally defined as a
set of subsets of nodes from P , where each such subset consists of the root nodes in a subforest of P that is included
in T (v). However, S(v) was restricted to subsets of Chd(u) for a single node u in P when the bounded outdegree case was
considered. We employ this restricted definition in this paper and define S(v) for any fixed u ∈ V (P) by:

S(v) = {U ⊆ Chd(u) | P (U) ⊂ T (v)},
where P (U) is the forest induced by the nodes in U and their descendants and P (U) ⊂ T (v) means that every tree
from P (U) is included in T (v) without overlap (i.e., T (v) can be obtained from P (U) by node insertion operations). For
details, see [19].
86

T. Akutsu, J. Jansson, R. Li et al. Theoretical Computer Science 883 (2021) 83–98
Fig. 2. An example. A triangle X attached to vi means that P (u X) ⊂ T (vi). Note that the triangle D appears at v2, v3, and v4. However, P (uD) ≺ T (v2) does
not hold since it does not satisfy the minimality condition. Therefore, uD may be matched to v3 or v4, but uD will never be matched to v2 in TreeIncl1.

Kilpeläinen and Mannila’s algorithm [19] computes the S(v)-sets in a bottom-up order. It fixes an arbitrary left-to-right
ordering of the nodes of T (the ordering will not affect the correctness). Precisely, the left-to-right ordering is determined
as follows. We assume that for each node having two or more children, a left-to-right ordering is given to the children.
For any two nodes vi, v j ∈ V (T) (resp., vi, v j ∈ V (P)) that do not have any ancestor-descendant relationship, let v be the
lowest common ancestor, which is uniquely determined. For any descendant vk of v , let v ′

k be the child of v such that vk

is a descendant of v ′
k or vk = v ′

k . Then, vi is left (resp., right) of v j if and only if v ′
i is a left (resp., right) sibling of v ′

j . Note
that left-right relationships are defined for nodes only if they do not have any ancestor-descendant relationship. Below, we
denote “vi is left of v j” by vi � v j . To compute S(v), their algorithm performs the following operation from left to right for
the children v1, . . . , vl of v:

S := {A ∪ B | A ∈ S, B ∈ S(vi)},
starting with S = ∅, and then S(v) is assigned the resulting S . Clearly, the size of S(v) is no greater than 2d . However, this
way of updating S causes an �(22d)-factor in the running time because it examines �(2d) × �(2d) set pairs. To avoid this
bottleneck, we need a new approach for computing S(v), explained next. We shall focus on how to determine if P (u) ≺ T (v)

holds for a fixed (u, v) because this part is crucial for reducing the time complexity.
Assume w.l.o.g. that u has d children and write Chd(u) = {u1, . . . , ud}. To simplify the presentation, we will assume until

the end of this section that P (ui) ∼ P (u j) does not hold for any ui, u j ∈ Chd(u) with ui �= u j . For any vi ∈ V (T (v)), define
M(vi) by:

M(vi) = {u j ∈ Chd(u) | P (u j) ≺ T (vi)}.
For example, M(v0) = ∅, M(v2) = {uC }, and M(v3) = {uD , uE } in Fig. 2. Note that M(vi) is known for all descendants vi of
v before testing P (u) ≺ T (v) and does not change during the course of this testing. For any vi ∈ V (T (v)), L F (v, vi) denotes
the set of nodes in V (T (v)) each of which is left of vi (see Fig. 2 for an example). Next, define S(v, vi) by:

S(v, vi) = {U ⊆ Chd(u) | P (U) ⊂ T (L F (v, vi))} ∪
{U ⊆ Chd(u) | (U = U ′ ∪ {u j}) ∧ (P (U ′) ⊂ T (L F (v, vi))) ∧ (u j ∈ M(vi))}

where T (L F (v, vi)) is the forest induced by the nodes in L F (v, vi) and their descendants. Note that P (∅) ⊂ T (...) always
holds. Note also that each element of S(v, vi) is a subset of the children of u that are included in the forest induced
by the nodes left to vi and in V (T (vi)) under the condition that there exists at most one child u j such that P (u j) is
included in T (vi) in the corresponding inclusion mapping. The motivation for introducing S(v, vi) is that Lemma 1 below
will allow us to recover S(v) from a collection of S(v, vi)-sets, and the S(v, vi)-sets can be computed efficiently with
dynamic programming. We explain S(v, vi) using an example based on Fig. 2. Suppose we have the relations P (u A) ≺ T (v1),
P (uB) ≺ T (v1), P (uC) ≺ T (v2), P (uD) ≺ T (v3), P (uE) ≺ T (v3), P (uD) ≺ T (v4), and P (uF) ≺ T (v4). Then, the following
holds:

S(v, v0) = { ∅ },
S(v, v1) = { ∅, {u A}, {uB} },
S(v, v2) = { ∅, {uC } },
S(v, v3) = { ∅, {uD}, {uE } },
S(v, v4) = { ∅, {uD}, {uE }, {v F }, {uD , uE }, {uD , uF }, {uE , uF } }.

Next, we present a dynamic programming-based algorithm named TreeIncl1, for determining if P (u) ≺ T (v). To com-
pute all the S(v, vi)-sets, we construct a DAG (directed acyclic graph) G(V , E) from T (v), as illustrated in Fig. 3. Here,
V is defined by V = V (T (v)) − {v}, and E is defined by E = {(vi, v j) | vi � v j}. We define Pred(vi) by Pred(vi) =
{v j | (v j, vi) ∈ E}, meaning the set of the “predecessors” of vi , and also being equivalent to L F (v, vi). TreeIncl1 traverses
87

T. Akutsu, J. Jansson, R. Li et al. Theoretical Computer Science 883 (2021) 83–98
Fig. 3. Example of the DAG G(V , E) constructed from T (v), where v /∈ V , E is shown by dotted arrows, and T (v) is shown by bold lines.

G(V , E) so that node vi is visited only after all of its predecessors have been visited, at which point it runs the procedure
ComputeSet(v, vi) below to compute and store S(v, vi) for this vi . Recall that M(vi) = {u j ∈ Chd(u) | P (u j) ≺ T (vi)}.

Procedure ComputeSet(v, vi):

(1) If Pred(vi) = ∅ then S(v, vi) := {∅} ∪ {{uh} | uh ∈ M(vi)}
(2) Else:
(2a) S0(vi) := ⋃

v j∈Pred(vi)
S(v, v j)

(2b) S(v, vi) := S0(vi) ∪ {S ∪ {uh} | uh ∈ M(vi), S ∈ S0(vi)}

Finally, after G(V , E) has been completely traversed, TreeIncl1 assigns S(v) := ⋃
vi∈Des(v) S(v, vi). Then P (u) is included

in T (v) with u corresponding to v if and only if u and v have the same label and Chd(u) ∈ S(v). Note that S(v) = ∅ holds
for each v if Chd(u) = ∅.

Lemma 1. Procedure ComputeSet(v, vi) correctly computes S(v, vi)s, and S(v) = ∪vi∈Des(v) S(v, vi).

Proof. First we show that ComputeSet(v, vi) correctly computes S(v, vi)s. It is seen from Proposition 1 that U ∈ S(v, vi)

holds for U = {ui1 , . . . , uik } ⊆ Chd(u) (U = ∅ if k = 0) if and only if there exists a sequence of nodes (v j1 , v j2 , . . . , v jk) such
that P (uip) ≺ T (v jp) holds for all p = 1, . . . , k and v j1 � v j2 � · · · � v jk (by appropriately renumbering indices of ui1 , . . . , uik),
where v jk = vi or v jk � vi . On the other hand, it is seen from ComputeSet(v, vi) that this procedure examines all possible
sequences such that v j1 � v j2 � · · · � v jk′ with v jk′ = vi or v jk′ � vi , and adds at most one uh ∈ M(v jp) to each set in
S0(v jp). It is also seen that the procedure and the above discussion that S0(v jp) consists of U s such that U ⊆ Chd(u)

and P (U) ⊂ T (L F (v, v jp)). Therefore, we can see from the definition of M(. . .) that ComputeSet(v, vi) correctly computes
S(v, vi)s.

Then we show the second statement of the lemma. Let U ∈ S(v) and dU = |U |. Let φ be an injection from U to Des(v)

giving an inclusion mapping for P (U) ⊂ T (v), which is the one guaranteed by Proposition 1. Let {v ′
1, . . . , v

′
dU

} = {φ(u j)|u j ∈
U }, where v ′

1 � v ′
2 � · · · � v ′

dU
. Then, v ′

i ∈ L F (v, v ′
i+1) and v ′

i ∈ L F (v, v ′
dU

) hold for all i = 1, . . . , dU − 1. Furthermore, P (u j) ≺
T (v ′

i) holds for v ′
i = φ(u j). Therefore, U ∈ S(v, v ′

dU
).

It is straightforward to see that S(v, vi) does not contain any element not in S(v). �
The overall procedure of TreeIncl1 is given by the pseudocode of Algorithm 1. In this procedure, we traverse nodes in

both P and T from left to right in the postorder (i.e., leaves to the root). We maintain Min(u) for u ∈ V (P) (resp., Min(v)

for v ∈ V (T)) that consists of the currently available nodes v ′ (resp., u′) such that P (u) ≺ T (v ′) (resp., P (u′) ≺ T (v)).

Lemma 2. TreeIncl1 outputs the set of all nodes v such that P ≺ T (v) in O (d · 2d · mn3) time using O (d · 2d · n + mn) space.

Proof. Since the correctness follows from Lemma 1, we analyze the time complexity.
The sizes of the S(v), S(v, vi j)s, and S0(vi)s are O (d ·2d), where we can use a simple bit vector of size O (d) to represent

each subset of U . The computation of each of these sets takes O (d · 2d · n) time. Since the number of S(v, vi j)s and S0(vi)s
per (u, v) ∈ V (P) × V (T) are O (n), the total computation time for S(v, vi j)s per (u, v) is O (d · 2d · n2). Hence, the total
computation time for computing S(v)s for all (u, v)s is O (d · 2d · mn3).

Since the size of each S(v, vi) is O (d · 2d) and we need to maintain S(v, vi) for vi ∈ Des(v) per (u, v), O (d · 2d ·n) space
is enough to maintain S(v, vi)s. Note that we can re-use the same space for different (u.v)s.

The time needed for other operations can be analyzed as follows. We can use simple bit vectors to maintain Min(u)s
and Min(v)s, which need O (mn) space in total and O (1) time per addition of an element or checking of the membership.
Therefore, the total computation time required to maintain Min(u)s and Min(v)s is O (mn). Furthermore, M(v) can be
computed in O (d) time per (u, v) and thus the total time to compute M(v)s is O (dmn), and “u /∈ Min(vi) for all vi ∈
88

T. Akutsu, J. Jansson, R. Li et al. Theoretical Computer Science 883 (2021) 83–98
Algorithm 1 TreeIncl1(P , T).
for all v ∈ V (P) ∪ V (T) do

Min(v) := ∅
end for
for all u ∈ V (P) in postorder do

for all v ∈ V (T) in postorder do
M(v) := {u j ∈ Chd(u)|u j ∈ Min(v)}
for all vi ∈ Des(v) in postorder do

ComputeSet(v.vi)

end for
S(v) := ∪vi∈Des(v) S(v, vi)

if Chd(u) ∈ S(v) and u /∈ Min(vi) for all vi ∈ Des(v) and �(u) = �(v) then
Min(v) := Min(v) ∪ {u}
Min(u) := Min(u) ∪ {v}

end if
end for

end for
return Min(r(P))

Fig. 4. Example of T ′(v) and G ′(V ′, E ′). E ′ is shown by dashed arrows.

Des(v)” can be checked in O (|Des(v)|) ≤ O (n) time per (u, v) and thus the total computation time needed for this checking
is O (mn2).

Therefore, the time and space complexities of TreeIncl1 are O (d · 2d · mn3) and O (d · 2d · n + mn), respectively. �
Remark: If there exist ui, u j ∈ Chd(u), ui �= u j such that P (ui) ∼ P (u j), we treat each element in S(v), S(v, vi j)s, and

S0(vi)s as a multiset where any ui and u j such that P (ui) ∼ P (u j) are identified and the multiplicity of ui is bounded by
the number of P (u j)s isomorphic to P (ui). Then, since |Chd(u)| ≤ d for all u in P , the size of each multiset is at most d
and the number of different multisets is not greater than 2d . Therefore, the same time complexity result holds. (The same
arguments can be applied to the following sections.) Note that by treating ui and u j separately, we do not need to modify
the algorithm.

Next, we discuss how to improve the efficiency of TreeIncl1. Actually, to compute S0(vi), it is not necessary to consider
all of the vi j s that are left of vi . Instead, we can construct a tree T ′(v) from a given T (v) according to the following rule
(see Fig. 4 for an illustration):

• For each pair of consecutive siblings (vi, v j) in T (v), add a new sibling (leaf) v(i, j) between vi and v j .

Newly added nodes are called virtual nodes. All virtual nodes have the same label that does not appear in P , to ensure that
no u ∈ V (P) is in M(v(i, j)). We then construct a DAG G ′(V ′, E ′) on V ′ = V (T ′(v)) where (vi, v j) ∈ E ′ if and only if one of
the following holds:

• v j is a virtual node, and vi is in the rightmost path of T ′(v j1), where v j = v(j1, j2); or
• vi is a virtual node, and v j is in the leftmost path of T ′(vi2), where vi = v(i1,i2) .

By replacing G(V , E) by G ′(V ′, E ′) in TreeIncl1 (and keeping all other steps intact), we obtain what we call TreeIncl2. Note
that in TreeIncl2, v(i, j)s are treated in the same ways as for vi s and thus we need not introduce the definitions for such
terms as S(v.v(i, j)) and L F (v, v(i, j)) nor change the definition of S(v.vi).

Lemma 3. TreeIncl2 computes S(v, vi)s for all vi ∈ Des(v) in O (d · 2d · n) time per (u, v) ∈ V (P) × V (T).

Proof. First we prove that there exists a path in G ′(V ′, E ′) from vi ∈ V to v j ∈ V if and only if vi � v j (see also Fig. 5). It
can be seen from the definition of the left-right relationship that if (vi , vk) ∈ E ′ and (vk, v j) ∈ E ′ where vi, v j ∈ V and vk
is a virtual node, then vi � v j . Since virtual nodes and non-virtual nodes appear alternatively in every path in G ′(V ′, E ′),
the “only if” part holds. Suppose that vi � v j holds for vi, v j ∈ V . Let vk be the lowest common ancestor of vi and v j . We
assume w.l.o.g. that vi or v j is not a child of vk because the other cases can be proved in the same way. Let vk1 , vk , vk , vk
2 3 4

89

T. Akutsu, J. Jansson, R. Li et al. Theoretical Computer Science 883 (2021) 83–98
Fig. 5. Illustration of a path from vi to v j in the proof of Lemma 3.

be children of vk such that vk1 ∈ Anc(vi), (vk1 , vk2) ∈ E ′ , (vk3 , vk4) ∈ E ′ , and vk4 ∈ Anc(v j), where vk2 and vk3 are virtual
nodes and can be the same node. We show that there exists a path in G ′(V ′, E ′) from vi to vk2 . Let vh be the lowest
ancestor of vi that has children vh1 , vh2 , vh3 , vh4 such that vh1 ∈ Ans(vi), (vh1 , vh2) ∈ E ′ , (vh3 , vh4) ∈ E ′ , and vh4 (�= vh1) is
the rightmost child of vh , where vh2 and vh3 are virtual nodes and can be the same node. Then, (vi , vh2) ∈ E ′ holds from
the construction of G ′(V ′, E ′) and thus there exists a path from vi to vh4 . We can repeat this procedure by regarding vh4 as
vi , and so on, from which it follows that there exists a path in G ′(V ′, E ′) from vi to vk2 . It is also seen from the symmetry
on the left-right relationship that there exists a path in G ′(V ′, E ′) from vk3 to v j . Furthermore, there clearly exists a path
in G ′(V ′, E ′) from vk2 to vk3 , which completes the proof of the “if” part.

Moreover, from the above discussion, it can be seen that TreeIncl2 examines the same set of sequences v j1 � v j2 �· · ·� v jk′
as TreeIncl1 examines when ignoring virtual nodes. Furthermore, addition of an element is not performed at any virtual
node, and no element is deleted at any virtual or non-virtual node v in constructing S(v). Therefore, TreeIncl2 correctly
computes S(v, vi)s.

Next we analyze the time complexity. We can see that |E ′| = O (n) since:

• |V (T ′(v))| = O (n);
• each non-virtual node in G ′(V ′, E ′) has at most one incoming edge and at most one outgoing edge; and
• each new edge connects a non-virtual node and virtual node.

Therefore, the total number of set operations is O (d · 2d · n), and the lemma follows. �
From Lemmas 2 and 3, we have the following main theorem.

Theorem 1. Unordered tree inclusion can be solved in O (d · 2d · mn2) time and O (d · 2d · n + mn) space.

If we use the height h(T) of a tree T as an additional parameter, we can express the time complexity as O (d · 2d · h(T) ·
mn) because the time complexity is represented in this case as O (m

∑
v∈V (T) d ·2d · |T (v)|) and

∑
v∈V (T) |T (v)| ≤ (h(T) +1)n

hold. This bound is better than the one by Kilpeläinen and Mannila [19] when d is large (to be precise, when d > c log(h(T))

for some constant c).

4. NP-hardness of the case of pattern trees with unique leaf labels

For any node-labeled tree T , let L(T) be the set of all leaf labels in T . For any c ∈ L(T), let occ(T , c) be the number of
times that c occurs in T , and define occ(T) = maxc∈L(T) occ(T , c).

The decision version of the tree inclusion problem is the problem of determining whether T can be obtained from P
by applying a sequence of node insertion operations. Kilpeläinen and Mannila [19] proved that the decision version of
unordered tree inclusion is NP-complete by a reduction from Satisfiability. In their reduction, the clauses in a given instance
of Satisfiability are used to label the non-root nodes in the constructed trees P and T ; in particular, for every clause C ,
each literal in C introduces one node in T whose node label represents C . (See the proofs of Lemma 7.2 and Theorem 7.3
in [19] by Kilpeläinen and Mannila for details.) By using 3-SAT instead of Satisfiability in their reduction, every clause will
determine the label of at most three nodes in T , so we immediately have:

Corollary 1. The decision version of the unordered tree inclusion problem is NP-complete even if restricted to instances where h(T) = 2,
h(P) = 1, occ(T) = 3, and occ(P) = 1.

In Kilpeläinen and Mannila’s reduction, the labels assigned to the internal nodes of T are significant. Here, we consider
the computational complexity of the special case of the problem where all internal nodes in P and T have the same label,
or equivalently, where only the leaves are labeled. The next theorem is the main result of this section.
90

T. Akutsu, J. Jansson, R. Li et al. Theoretical Computer Science 883 (2021) 83–98
Theorem 2. The decision version of the unordered tree inclusion problem is NP-complete even if restricted to instances where h(T) = 2,
h(P) = 2, occ(T) = 3, occ(P) = 1, and all internal nodes have the same label.

Proof. Membership in NP was shown in the proof of Theorem 7.3 by Kilpeläinen and Mannila [19]. Next, to prove the
NP-completeness, we present a reduction from Exact Cover by 3-Sets (X3C), which is known to be NP-complete [16]. X3C is
defined as follows.

Exact Cover by 3-Sets (X3C):

Given a set U = {u1, u2, . . . , un} and a collection S = {S1, S2, . . . , Sm} of subsets of U where |Si| = 3 for every Si ∈ S
and every ui ∈ U belongs to at most three subsets in S , does (U , S) admit an exact cover, i.e., is there an S ′ ⊆ S
such that |S ′| = n/3 and

⋃
Si∈S ′ Si = U ?

We assume w.l.o.g. that in any given instance of X3C, n/3 is an integer and each ui ∈ U belongs to at least one subset
in S .

Given an instance (U , S) of X3C, construct two node-labeled, unordered trees T and P as described next. (Refer to
Fig. 6 for an example of the reduction.) Let W = {s j

i : 1 ≤ i ≤ m, 0 ≤ j ≤ n/3} be a set of elements different from U (i.e.,
U ∩ W = ∅), define L = U ∪ W , and let α be an element not in L. For any L′ ⊆ L, let t(L′) denote the height-1 unordered
tree consisting of a root node labeled by α whose children are bijectively labeled by L′ . Construct T by creating a node r
labeled by α and attaching the roots of the following trees as children of r:

(i) t({s0
i } ∪ Si) for each i ∈ {1, 2, . . . , m}

(ii) t({s j−1
i , s j

i }) for each i ∈ {1, 2, . . . , m}, j ∈ {1, 2, . . . , n/3}
(iii) t({s j

1, s
j
2, . . . , s

j
m}) for each j ∈ {1, 2, . . . , n/3}

Construct P by taking a copy of t(U) and then, for each w ∈ W , attaching the root of t({w}) as a child of the root of P .
Note that by construction, L(T) = L(P) = L, h(T) = 2, h(P) = 2, occ(T) = 3, and occ(P) = 1 hold.

We will now show that P is included in T if and only if (U , S) admits an exact cover.

(←) First, suppose that (U , S) admits an exact cover {Sσ1 , Sσ2 , . . . , Sσn/3} ⊆ S . Then P is included in T because:

• For each Si ∈ S in the exact cover, the three leaves in P that are labeled by Si can be mapped to the t({s0
i } ∪ Si)-subtree

in T .
• For each Si ∈ S in the exact cover, the leaf in P labeled by s j

i can be mapped to the t({s j
i , s

j+1
i })-subtree in T for j ∈

{0, 1, . . . , k − 1}, to the t({s j
1, s

j
2, . . . , s

j
m})-subtree for j = k, and to the t({s j−1

i , s j
i })-subtree for j ∈ {k + 1, k + 2, . . . , n/3},

where k is defined by Si = Sσk .
• For each Si ∈ S that is not in the exact cover, the leaf in P labeled by s0

i can be mapped to the t({s0
i } ∪ Si)-subtree

in T .
• For each Si ∈ S that is not in the exact cover, the leaf in P labeled by s j

i can be mapped to the t({s j−1
i , s j

i })-subtree
in T for j ∈ {1, 2, . . . , n/3}.

Fig. 6. Illustrating the proof of Theorem 2. Suppose that U = {a, b, c, d, e, f } and S = {{a, b, c}, {a, b, d}, {b, c, e}, {c, d, e}, {d, e, f }} with |S| = 5 is a given
instance of X3C. Applying the reduction yields the shown trees T and P . Here, P is included in T because all the leaves of P can be mapped to leaves in T
as indicated by the boxes, which gives the exact cover {{a, b, c}, {d, e, f }} for (U , S).
91

T. Akutsu, J. Jansson, R. Li et al. Theoretical Computer Science 883 (2021) 83–98
(→) Next, suppose that P is included in T . By the definitions of T and P , each subtree rooted at a child of the root
of T can have at most one leaf with a label in W or at most three leaves with labels in U mapped to it from P . Since
|W | = m · (n/3 + 1) but there are only (m + 1) · n/3 subtrees in T of the form t({s j−1

i , s j
i }) and t({s j

1, s
j
2, . . . , s

j
m}), at least

m − n/3 subtrees of the form t({s0
i } ∪ Si) must have a leaf with a label from {s0

i : 1 ≤ i ≤ m} mapped to them. This means
that at most n/3 subtrees of the form t({s0

i } ∪ Si) remain for the n leaves in P labeled by U to be mapped to, and hence,
exactly n/3 such subtrees have to be used. Denote these n/3 subtrees by t({s0

σ1
} ∪ Sσ1), t({s0

σ2
} ∪ Sσ2), . . . , t({s0

σn/3
} ∪ Sσn/3).

Then {Sσ1 , Sσ2 , . . . , Sσn/3 } is an exact cover of (U , S). �
5. A polynomial-time algorithm for the case of occ(P , T) = 2

This section and the following ones consider the decision version of unordered tree inclusion. By repeatedly applying
each procedure O (n) times, we can solve the locating problem version and thus the theorems hold as they are.

In this section, we require that each leaf of P has a unique label and that it appears at no more than k leaves in T . We
denote this number k by occ(P , T) (see Fig. 7). Note that the case of occ(P) = 1 and occ(T) = k is included in the case of
occ(P , T) = k. From the unique leaf label assumption, we have the following observation.

Proposition 3. Suppose that P (u) has a leaf labeled with b. If P (u) ⊂ T (v), then v is an ancestor of a leaf (or leaf itself) with label b.

We say that v j is a minimal node for ui if P (ui) ≺ T (v j) holds. It follows from the proposition above that the number of
minimal nodes is at most k for each ui if occ(P , T) = k.

The preliminary version of this paper [5] showed that the case k = 2 can be solved in polynomial time by using a
reduction to 2-SAT. Here, we give a more direct solution that effectively utilizes some techniques from a classic polynomial-
time algorithm for 2-SAT [8]. This algorithm will be extended for the case of k = 3 in the next subsection.

From Proposition 2, it is enough to consider the decision of whether P (u) ⊂ T (v) with u corresponding to v . Let
Chd(u) = {u1, . . . , ud}. We present a simple algorithm to decide whether or not P (u) ⊂ T (v). We can assume by induc-
tion that P (ui) ≺ T (v j) is known for all ui ∈ Chd(u) and for all v j ∈ V (T (v)) − {v}. Let M = {(ui, v j) | P (ui) ≺ T (v j) ∧ v j ∈
V (T (v))}. We define O CC(ui , M) and O cc(ui, M) by

O CC(ui, M) = {(ui, v j) | (ui, v j) ∈ M}.
O cc(ui, M) = |O CC(ui, M)|.

See Fig. 7 for an illustration. A node ui with O cc(ui, M) = h is called a node of rank h. Note that ui , v j , and M appearing
above depend on (u, v).

The crucial task is to find an injective mapping ψ (called a valid mapping) from P (u) to V (T (v)) − {v} such that P (ui) ≺
T (ψ(ui)) holds for all ui (i = 1, . . . , d) and there is no ancestor/descendant relationship between any ψ(ui) and ψ(u j) (ui �=
u j). If this task can be performed in O (f (d, m, n)) time, from Proposition 2, the total time complexity will be O ∗(f (d, m, n)).
We assume w.l.o.g. that ψ is given as a set of mapping pairs.

Hereafter, we let Chd(u) = {ui1 , . . . , uid }. Since we consider the case of occ(P , T) = 2, we assume w.l.o.g. that all uik s
have rank 2 (i.e., O cc(uik , M) = 2 for k = 1, . . . , d). Accordingly, we let O CC(uik , M) = {(uik , v jk,0), (uik , v jk,1)} for k = 1, . . .,
d. As in [8], we construct a directed graph G2(V 2, E2) by

V 2 = {uik,0 , uik,1 | uik ∈ Chd(u)},
E2 = {(uik,p , uih,q) | v jk,p ∈ AncDes(v jh,1−q), h �= k},

where uik,p s are newly introduced symbols. See also Fig. 8. Intuitively, an arc (uik,p , uih,q) implies that if (uik , v jk,p) is in the
inclusion mapping then it is possible for (uih , v jh,q), but not (uih , v jh,1−q), to be in the mapping, too.

Proposition 4. There exists a path (resp., an edge) from uik,p to uih,q if and only if there exists a path (resp., an edge) from uih,1−q to
uik,1−p .

Fig. 7. For these trees, O cc(u1, M) = O cc(u2, M) = 3, O cc(u3, M) = O cc(u4, M) = O cc(u5, M) = 2, d2 = 3, d3 = 2, and occ(P , T) = 3.
92

T. Akutsu, J. Jansson, R. Li et al. Theoretical Computer Science 883 (2021) 83–98
Fig. 8. Example of G2(V 2, E2) constructed from P (u) and T (v) in the case of occ(P , T) = 2. Each vertex uik,p is represented by the corresponding subtree in
T , where triangles labeled by the same capital letter represent isomorphic subtrees. G2(V 2, E2) has two strongly connected components {ui1,0 , ui2,1 , ui3,1 }
and {ui1,1 , ui2,0 , ui3,0 }, whereas there is only one consistent assignment {ui1,0 = 1, ui2,1 = 1, ui3,1 = 1, ui1,1 = 0, ui2,0 = 0, ui3,0 = 0}, which corresponds to a
mapping ψ = {(ui1 , v j1,0), (ui2 , v j2,1), (ui3 , v j3,1)}.

Proof. It is shown in [8] that G2(V 2, E2) has a duality property: G2 is isomorphic to the graph obtained from G2 by
reversing the direction of all the edges and complementing the names of all vertices. Since uih,q and uih,1−q (resp., uik,p and
uik,1−p) correspond to complementary variables, the proposition holds. �

Consider a 0-1 assignment to V 2, where 0 and 1 correspond to false and true, respectively. An assignment is called
consistent if the following conditions are satisfied.

• uik,0 + uik,1 = 1 holds for all k = 1, . . . , d,
• if uik,p = 1, all vertices reachable from uik,p have value 1.

Note that the first condition implies that uik,1−p corresponds to the negation of uik,p , which further means that uik must be
mapped to exactly one of v jk,0 and v jk,1 . Note also that the second condition implies that if uik,p = 0, all vertices reachable
to uik,p have value 0.

Proposition 5. P (u) ⊂ T (v) holds if and only if there exists a consistent assignment. Furthermore, ψ can be obtained from the vertices
to which 1 is assigned.

Proof. Suppose that there exists a consistent assignment. Then, we can construct an inclusion mapping ψ for Chd(u) by
letting ψ(uik) = v jk.p for p such that uik,p = 1, for all uik ∈ Chd(u), where the validity follows from the above two conditions
and the meaning of an arc.

Conversely, suppose that there exists an inclusion mapping ψ . Then, we let uik,p = 1 if and only if ψ(uik) = v jk.p for all
uik ∈ Chd(u), which clearly satisfies the above two conditions. �

As in [8], we have the following proposition.

Proposition 6. There exists a consistent assignment to V 2 if and only if there is no k such that uik,0 and uik,1 belong to the same
strongly connected component in G2(V 2, E2).

The strongly connected components can be computed in linear time [29]. Furthermore, a consistent assignment can be
obtained by greedily assigning 1 to vertices from deeper to shallower SCCs under the DFS (depth first search) ordering as in
[8]. Since this procedure can clearly be done in polynomial time, the following theorem holds.

Theorem 3. Unordered tree inclusion can be solved in polynomial time if occ(P , T) = 2.
93

T. Akutsu, J. Jansson, R. Li et al. Theoretical Computer Science 883 (2021) 83–98
Fig. 9. Example of G3(V 3, E3) constructed from P (u) and T (v) in the case of occ(P , T) = 3. u j4,0 and u j5,0 are inadmissible vertices, and (u j4,1 , u j5,1) is an
inadmissible pair.

6. An O ∗(1.619d)-time algorithm for the case of occ(P , T) = 3

In this section, we present an O ∗(1.619d)-time algorithm for the case of occ(P , T) = 3, where d is the maximum degree
of P , m = |V (P)|, and n = |V (T)|. Note that this case remains NP-hard from Theorem 2.

The basic strategy is to combine bottom-up dynamic programming and detection of a consistent assignment as in Sec-
tion 5 to determine whether P (u) ⊂ T (v) holds, where a recursive procedure is employed here for finding a consistent
assignment. Let Chd(u) = {ui1 , . . . , uid }. As in Section 5, we can assume that P (uik) ≺ T (v jh) is known for all uik and for all
v jh ∈ V (T (v)) − {v}, and we let M = {(uik , v jh) | P (uik) ≺ T (v jh) ∧ v jh ∈ V (T (v))}.

Let d3 (resp., d2) be the number of uik s of rank 3 (resp., rank 2) (see also Fig. 7). We assume w.l.o.g. that d2 + d3 = d
because O cc(uik , M) = 1 means that ψ(uik) is uniquely determined and thus we can ignore uik s with O cc(uik , M) = 1.

We construct G2(V 2, E2) as in Section 5, using only uik s with rank 2 and the corresponding v jh s, considering ancestor-
descendant relations only among them. Then, for each uik ∈ Chd(u) such that O CC(uik , M) = {(uik , v jk,0), (uik , v jk,1),
(uik , v jk,2)}, we let V O CC3(uik) = {uik,0 , uik,1 , uik,2}, where uik,p s are newly introduced symbols. Let V O CC3 =⋃

O cc(uik
,M)=3 V O CC3(uik). Then, we construct G3(V 3, E3) from G2(V 2, E2) by

V 3 = V 2 ∪ V O CC3,

E3 = E2 ∪ {(uik,p , uih,q) | uik,p ∈ V O CC3, uih,q ∈ V 2, vih,1−q ∈ AncDes(vik,p)}.
See Fig. 9 for an example of G3(V 3, E3).

Definition 2. We say that uik,p ∈ V O CC3 is an inadmissible vertex if there exist paths from uik,p to uil,0 and uil,1 in G3(V 3, E3)

for some uil ∈ Chd(u) of rank 2. We also say that (uik,p , uih,q) ∈ V O CC3 × V O CC3 (k �= h) is an inadmissible pair if vih,q ∈
AncDes(vik,p) holds, or there exist a path reachable from uik,p to uil,0 in G3(V 3, E3) and a path reachable from uih,q to uil,1
in G3(V 3, E3) for some uil ∈ Chd(u) of rank 2.

It is to be noted that an inadmissible vertex or an inadmissible pair (uik,p , uih,q) cannot appear in any injective mapping
ψ for P (u) ⊂ T (v) because the use of an inadmissible vertex or an inadmissible pair would make a consistent assignment
impossible. Accordingly, we can assume w.l.o.g. that there does not exist an inadmissible vertex uik,p in V O CC3.

Proposition 7. Suppose that there exists a consistent assignment on vertices in G2(V 2, E2) in the sense defined in Section 5. If there
does not exist an inadmissible pair, there exists a valid mapping ψ . Furthermore, such a mapping can be found in polynomial time.

Proof. We present a greedy algorithm for finding a consistent assignment, from which a valid mapping can be obtained.
Beginning with an empty assignment on all vertices in V 2, we repeat the following procedure in any order: for each uik of
rank 3, assign 1 to uik,0 , assign 0 to uik,1 and uik,2 , and assign 1 to all vertices in G3(V 3, E3) reachable from uik,0 . Finally, we
extend the resulting assignment to a consistent assignment by assigning 1 to remaining vertices from deeper to shallower
strongly connected components under the DFS ordering. Clearly, this algorithm works in polynomial time. It is also seen
from the definition of the inadmissible pair that this algorithm always finds a consistent assignment. �
94

T. Akutsu, J. Jansson, R. Li et al. Theoretical Computer Science 883 (2021) 83–98
Algorithm 2 F indMapping(M).
if there exists an inadmissible pair ((uik , v jk,p), (uih , v jh,q)) then

M1 := Update(M, (uik , v jk,p))

M2 := M − {(uik , v jk,p)}
if F indMapping(M1) = true then

return true
else

return F indMapping(M2)

end if
end if
return F indMapping AD(M)

We denote the procedure in the proof of Proposition 7 by F indMapping AD(M). This procedure returns true or false.
true corresponds to the case where a consistent assignment and a valid mapping ψ exist. It is straightforward to modify
the procedure so that it outputs ψ when it exists.

In order to handle inadmissible pairs, we employ a simple recursive procedure. Suppose that (uik,p , uih,q) is an inadmis-
sible pair. If we include (uik , v jk,p) in ψ , we cannot include (uih , v jh,q) in ψ . In this case, d3 is decreased by 2. If we do not
include (uik , v jk,p), we can delete this pair from M , which decreases d3 by 1. Based on this idea, we obtain the following
main procedure for the case of occ(P , T) = 3. Note that if we include (uik , v jk,p) in ψ , all pairs (uik , v jk,r) with r = 0, 1, 2 are
removed from M . Furthermore, all pairs (uih , v jh,q) such that v jh,q ∈ AncDes(v jk,p) are removed from M , which may cause
further removal. Update(M, (uik , v jk,p)) executes this updating procedure while making the corresponding 0-1 assignments
on G3(V 3, E3).

Theorem 4. Unordered tree inclusion can be solved in O ∗(1.619d) time if occ(P , T) = 3.

Proof. It follows from the discussions above that F indMapping(M) correctly decides whether P (u) ⊂ T (v) (when u
and v have the same label). Therefore, we analyze the exponential factor (depending on d) of the time complexity of
F indMapping(M).

Let f (k) denote the number of times that F indMapping(M) is called when k = |{ui | O cc(ui, M) = 3}|. Clearly, if k ≤ 1,
f (k) ≤ 1. Otherwise (i.e., k ≥ 2), it may invoke two recursive calls: one with at most k − 2 nodes of rank 3 and the other
with at most k − 1 nodes of rank 3. Therefore, we have

f (k) ≤ f (k − 1) + f (k − 2),

from which f (k) = O (1.619k) follows (cf., Fibonacci number).
Since d3 ≤ d holds and both F indMapping AD(M) and Update(M, (uik , u jk,p)) work in polynomial time per execution, the

total time complexity is O ∗(1.619d). �
7. A randomized algorithm for the case of h(P) = 1 and h(T) = 2

Finally, we consider the case of h(P) = 1 and h(T) = 2, denoted by IncH2. This problem variant is NP-hard according to
Corollary 1. We assume w.l.o.g. that the roots of P and T have the same unique label and thus they must match in any
inclusion mapping.

Let U = {u1, . . . , ud} be the set of children of r(P). Let v1, . . . , v g be the children of r(T), and let vi,1, . . . , vi,ni be the
children of each vi .

First, we assume that �(ui) �= �(u j) holds for all i �= j, where �(v) denotes the label of v . This special case is denoted by
IncH2U. Recall that IncH2U remains NP-hard from the condition of occ(P) = 1 of Corollary 1.

IncH2U can be solved by a reduction to CNF SAT, different from the one mentioned in Section 5. (In fact, it can be
considered as an inverse reduction of the one originally used to prove the NP-hardness of unordered tree inclusion by
Kilpeläinen and Mannila [19].) For each ui , we define X P O S

i and X N EG
i by

X P O S
i = {x j |�(ui) = �(v j)},

X N EG
i = {x j | (∃v j,k ∈ Chd(v j))(�(ui) = �(v j,k))}.

For each ui , we construct a clause Ci by

Ci =
⎛
⎜⎝ ∨

x j∈X P O S
i

x j

⎞
⎟⎠ ∨

⎛
⎜⎝ ∨

x j∈X N EG
i

x j

⎞
⎟⎠ .

Then, the resulting SAT instance is {C1, . . . , Cd}. Intuitively, x j = 1 corresponds to the case where ui is mapped to v j , where
�(ui) = �(v j). Of course, multiple v js may correspond to ui . However, it is enough to consider an arbitrary one.
95

T. Akutsu, J. Jansson, R. Li et al. Theoretical Computer Science 883 (2021) 83–98
Proposition 8. IncH2U can be solved in O ∗(1.234d) time.

Proof. First we prove the correctness of the reduction, where we assume w.l.o.g. that r(P) is mapped to r(T). Suppose that
there exists an inclusion mapping φ from V (P) to V (T). Then, we let x j = 1 if φ(ui) = v j , and x j = 0 if φ(ui) = v j,k . An
arbitrary assignment can be done on each of the other variables. Then, we can see that there is no inconsistency on the
resulting assignment and all Ci s are satisfied. Conversely, suppose that there exists a satisfying assignment on Ci s. We let
φ(ui) = v j if x j = 1 and �(ui) = �(v j). Otherwise, we can let φ(ui) = v j,k for some v j such that x j = 0 and �(ui) = �(v j,k).
This φ gives an inclusion mapping.

Next we consider the time complexity. In order to solve the satisfiability instance, we use Yamamoto’s O ∗(1.234d)-time
algorithm for SAT with d clauses [31]. Since the other parts can be done in polynomial time, we have the proposition. �

In order to solve IncH2, we combine two algorithms: (A1) a random sampling-based algorithm; and (A2) a modified
version of the O (d2dmn2)-time algorithm in Section 3.

For (A1), we employ the color-coding technique [7]. Let d0 be the number of ui s having unique labels, and let d1 ≤ d2 ≤
· · · ≤ dh be the multiplicities of the other labels in U . Define α = 1 − d0

d . Note that d0 + d1 + · · · + dh = d and d − d0 = αd
hold.

For each label ai with di ≥ 2 (i.e., i > 0), we relabel the nodes in P having label ai by a1
i , a

2
i , . . . , a

di
i in an arbitrary order.

For each node v in T having label ai , we assign a j
i (j = 1, . . . , di) to v uniformly at random, and then apply the SAT-based

algorithm for IncH2U. Let M be the set of pairs in an inclusion mapping from P to T . If all nodes of T appearing in M have
different labels, a valid inclusion mapping can be obtained. This success probability is given by

d1!
dd1

1

· d2!
dd2

2

· · · dh!
ddh

h

≥ (αd)!
(αd)(αd)

.

This inequality can be proved by repeatedly applying

d1!
dd1

1

· d2!
dd2

2

≥ (d1 + d2)!
(d1 + d2)d1+d2

,

which is seen from

(d1 + d2)
d1+d2

dd1
1 dd2

2

≥
(

d1 + d2
d1

)
= (d1 + d2)!

d1!d2! .

Since k!
kk ≥ e−k holds for sufficiently large k, the success probability is at least e−αd . Therefore, if we repeat the random

sampling procedure eαd times, the failure probability is at most (1 −e−αd)eαd ≤ e−1 < 1
2 because ln

[
(1 − 1

x)x
] = x ln(1 − 1

x) ≤
x(− 1

x) = −1 = ln(e−1) holds for any x > 1.
If we repeat the procedure k(log n)eαd times where k is any positive constant (i.e., the total time complexity is

O ∗(1.234d · eαd)), the failure probability is at most 1
nk .

For (A2), we modify the O (d2dmn2)-time algorithm as follows. Recall that if there exist labels with multiplicity more
than one, S(v, vi) is a multi-set. In order to represent a multi-set, we memorize the multiplicity of each label. Then, the
number of distinct multi-sets is given by

N(d0, . . . ,dh) = 2d0 ·
h∏

l=1

(dl + 1).

Since di + 1 ≤ 3�di/2� holds for any di ≥ 2, this number is bounded as follows:

N(d0, . . . ,dh) ≤ 2d0 · 3�(d−d0)/2�.

Then, the time complexity of (A2) is O ∗(2(1−α)d · 3(α/2)d).
Since we can select the minimum of the time complexities of (A1) and (A2), the resulting time complexity is given by

max
α

min(O ∗(1.234d · eαd), O ∗(2(1−α)d · 3(α/2)d)).

Since 1.234d · eαd and 2(1−α)d · 3(α/2)d are increasing and decreasing functions of α, respectively, this maximum is attained
when 1.234 · eα = 2(1−α) · 3(α/2) . By numerical calculation, we have α ≈ 0.42217, from which the following theorem follows.

Theorem 5. IncH2 can be solved in randomized O ∗(1.883d) time with probability at least 1 − 1
k , where k is any positive constant.
n

96

T. Akutsu, J. Jansson, R. Li et al. Theoretical Computer Science 883 (2021) 83–98
The above algorithm may be derandomized by using k-perfect hash families as in [7]. However, since the construction
of a k-perfect hash family has a high complexity, the resulting algorithm would have a time complexity much worse than
O ∗(2d).

8. Concluding remarks

We have presented a new algorithm for unordered tree inclusion running in O ∗(2d) time, thus reducing the exponent 2d
in the previously best known bound on the time complexity [19] to d. However, the 2d-factor may not be optimal. For
example, our randomized algorithm for the special case of h(P) = 1 and h(T) = 2 runs in O ∗(1.883d) time, which suggests
that further improvements could be possible. However, we were unable to obtain an O ∗((2 − ε)d)-time algorithm for any
constant ε > 0, even when h(P) = h(T) = 2. Similarly, we could not obtain an O ∗((2 − ε)d)-time algorithm for any constant
ε > 0 when occ(P , T) = 4. Therefore, to develop an O ∗((2 − ε)d)-time algorithm for unordered tree inclusion or to prove
an �(2d) lower bound (e.g., using recent techniques from [1,2,12] for proving lower bounds on various tree and sequence
matching problems) is left as an open problem.

Future work includes generalizing our techniques and applying them to the extended tree inclusion problem mentioned
in Section 1.2. This problem variant was introduced by Mori et al. [24] as a way to make unordered tree inclusion more
useful for practical pattern matching applications. It asks for an optimal connected subgraph of T (if any) that can be
obtained by applying node insertion operations as well as node relabeling operations to P while allowing non-uniform
costs to be assigned to the different node operations. It was shown in [24] that the unrooted case can be solved in
O ∗(22d) time, and a further extension of the problem that also allows at most K node deletion operations can be solved in
O ∗((ed)K K 1/222(dK+d−K)) time, where e is the base of the natural logarithm.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

References

[1] A. Abboud, A. Backurs, T.D. Hansen, V.V. Williams, O. Zamir, Subtree isomorphism revisited, in: Proceedings of the 27th Annual ACM-SIAM Symposium
on Discrete Algorithms, SIAM, 2018, pp. 1256–1271.

[2] A. Abboud, V.V. Williams, O. Weimann, Consequences of faster alignment of sequences, in: Proceedings of the 41st International Colloquium on
Automata, Languages, and Programming - Part 1, Springer, 2014, pp. 39–51.

[3] T. Akutsu, D. Fukagawa, M.M. Halldórsson, A. Takasu, K. Tanaka, Approximation and parameterized algorithms for common subtrees and edit distance
between unordered trees, Theor. Comput. Sci. 470 (2013) 10–22.

[4] T. Akutsu, D. Fukagawa, A. Takasu, T. Tamura, Exact algorithms for computing the tree edit distance between unordered trees, Theor. Comput. Sci.
412 (4–5) (2011) 352–364.

[5] T. Akutsu, J. Jansson, R. Li, A. Takasu, T. Tamura, New and improved algorithms for unordered tree inclusion, in: Proceedings of the 29th International
Symposium on Algorithms and Computation, 2018, pp. 27:1–27:12.

[6] T. Akutsu, T. Tamura, D. Fukagawa, A. Takasu, Efficient exponential-time algorithms for edit distance between unordered trees, J. Discret. Algorithms 25
(2014) 79–93.

[7] N. Alon, R. Yuster, U. Zwick, Color-coding, J. ACM 42 (4) (1995) 844–856.
[8] B. Aspvall, M.F. Plass, R.E. Tarjan, A linear-time algorithm for testing the truth of certain quantified Boolean formulas, Inf. Process. Lett. 8 (3) (1979)

121–123.
[9] P. Bille, A survey on tree edit distance and related problems, Theor. Comput. Sci. 337 (1) (2005) 217–239.

[10] P. Bille, I.L. Gørtz, The tree inclusion problem: in linear space and faster, ACM Trans. Algorithms 7 (3) (2011) 38.
[11] M. Boroujeni, M. Ghodsi, M. Hajiaghayi, S. Seddighin, 1 + ε Approximation of tree edit distance in quadratic time, in: Proceedings of the 51st Annual

ACM Symposium on the Theory of Computing, ACM, 2019, pp. 709–720.
[12] K. Bringmann, P. Gawrychowski, S. Mozes, O. Weimann, Tree edit distance cannot be computed in strongly subcubic time (unless APSP can), in:

Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, 2018, pp. 1190–1206.
[13] L. Chang, X. Lin, W. Zhang, J.X. Yu, Y. Zhang, L. Qin, Optimal enumeration: efficient top-k tree matching, Proc. VLDB Endow. 8 (5) (2015) 533–544.
[14] S. Cohen, N. Or, A general algorithm for subtree similarity-search, in: 2014 IEEE 30th International Conference on Data Engineering, IEEE, 2014,

pp. 928–939.
[15] E.D. Demaine, S. Mozes, B. Rossman, O. Weimann, An optimal decomposition algorithm for tree edit distance, ACM Trans. Algorithms 6 (1) (2009) 2.
[16] M.R. Garey, D.S. Johnson, Computers and Intractability – A Guide to the Theory of NP-Completeness, W. H. Freeman and Company, New York, 1979.
[17] M. Garofalakis, A. Kumar, XML stream processing using tree-edit distance embeddings, ACM Trans. Database Syst. 30 (1) (2005) 279–332.
[18] M. Kanehisa, S. Goto, Y. Sato, M. Kawashima, M. Furumichi, M. Tanabe, Data, information, knowledge and principle: back to metabolism in KEGG,

Nucleic Acids Res. 42 (D1) (2013) D199–D205.
[19] P. Kilpeläinen, H. Mannila, Ordered and unordered tree inclusion, SIAM J. Comput. 24 (2) (1995) 340–356.
[20] P. Konda, S. Das, P.S. G.C., A. Doan, A. Ardalan, J.R. Ballard, H. Li, F. Panahi, H. Zhang, J. Naughton, S. Prasad, G. Krishnan, R. Deep, V. Raghavendra,

Magellan: toward building entity matching management systems, Proc. VLDB Endow. 9 (12) (2016) 1197–1208.
[21] H. Köpcke, A. Thor, E. Rahm, Evaluation of entity resolution approaches on real-world match problems, Proc. VLDB Endow. 3 (1–2) (2010) 484–493.
[22] J. Li, T. Luong, D. Jurafsky, E.H. Hovy, When are tree structures necessary for deep learning of representations?, in: Proceedings of the 2015 Conference

on Empirical Methods in Natural Language Processing, EMNLP 2015, Lisbon, Portugal, September 17-21, 2015, pp. 2304–2314.
[23] J. Matoušek, R. Thomas, On the complexity of finding iso- and other morphisms for partial k-trees, Discrete Math. 108 (1–3) (1992) 343–364.
[24] T. Mori, A. Takasu, J. Jansson, J. Hwang, T. Tamura, T. Akutsu, Similar subtree search using extended tree inclusion, IEEE Trans. Knowl. Data Eng. 27 (12)

(2015) 3360–3373.
[25] M. Pawlik, N. Augsten, RTED: a robust algorithm for the tree edit distance, Proc. VLDB Endow. 5 (4) (2011) 334–345.
97

http://refhub.elsevier.com/S0304-3975(21)00362-5/bibB8DAB5ECAE6785CB8876D5B7B169A550s1
http://refhub.elsevier.com/S0304-3975(21)00362-5/bibB8DAB5ECAE6785CB8876D5B7B169A550s1
http://refhub.elsevier.com/S0304-3975(21)00362-5/bibD12C2AFCC8B0D618323C86F2BE7557F3s1
http://refhub.elsevier.com/S0304-3975(21)00362-5/bibD12C2AFCC8B0D618323C86F2BE7557F3s1
http://refhub.elsevier.com/S0304-3975(21)00362-5/bib32F22042BC8B97087DCB18F8289AC261s1
http://refhub.elsevier.com/S0304-3975(21)00362-5/bib32F22042BC8B97087DCB18F8289AC261s1
http://refhub.elsevier.com/S0304-3975(21)00362-5/bibA756CA7C57CAA21880D1018BA1E9A647s1
http://refhub.elsevier.com/S0304-3975(21)00362-5/bibA756CA7C57CAA21880D1018BA1E9A647s1
http://refhub.elsevier.com/S0304-3975(21)00362-5/bibDF85ED5AB76C0C159FF81FC8AF70279Ds1
http://refhub.elsevier.com/S0304-3975(21)00362-5/bibDF85ED5AB76C0C159FF81FC8AF70279Ds1
http://refhub.elsevier.com/S0304-3975(21)00362-5/bibC31C402D198FC02D0810DE861C59B5D2s1
http://refhub.elsevier.com/S0304-3975(21)00362-5/bibC31C402D198FC02D0810DE861C59B5D2s1
http://refhub.elsevier.com/S0304-3975(21)00362-5/bib8F1E588D2647A4742E86775709A8D2B8s1
http://refhub.elsevier.com/S0304-3975(21)00362-5/bib4295DF2C5550D853C9D30E226F40A685s1
http://refhub.elsevier.com/S0304-3975(21)00362-5/bib4295DF2C5550D853C9D30E226F40A685s1
http://refhub.elsevier.com/S0304-3975(21)00362-5/bib95C51F9BD703A12AFD61C3FFD4386B73s1
http://refhub.elsevier.com/S0304-3975(21)00362-5/bib9AACD0DD6BCFCCF5B7505D68A6425A37s1
http://refhub.elsevier.com/S0304-3975(21)00362-5/bib40C1E05630FE6BBD5CCDE6E8A4750322s1
http://refhub.elsevier.com/S0304-3975(21)00362-5/bib40C1E05630FE6BBD5CCDE6E8A4750322s1
http://refhub.elsevier.com/S0304-3975(21)00362-5/bib70BE6B4F4807DE96DE52389CBDF245EBs1
http://refhub.elsevier.com/S0304-3975(21)00362-5/bib70BE6B4F4807DE96DE52389CBDF245EBs1
http://refhub.elsevier.com/S0304-3975(21)00362-5/bibDCD1C61E8EE30F98D9E8D716DFD26173s1
http://refhub.elsevier.com/S0304-3975(21)00362-5/bibFA3AC95EB4BC8C5C2AA5E55E127BDC16s1
http://refhub.elsevier.com/S0304-3975(21)00362-5/bibFA3AC95EB4BC8C5C2AA5E55E127BDC16s1
http://refhub.elsevier.com/S0304-3975(21)00362-5/bibD341D9A4AA23B16E1CB9A8CB0DF290E6s1
http://refhub.elsevier.com/S0304-3975(21)00362-5/bibE7F9B4EA95567AA4992FF00270704DEDs1
http://refhub.elsevier.com/S0304-3975(21)00362-5/bib8422C5AE9BE33FDFBC4FACC5ECFAB706s1
http://refhub.elsevier.com/S0304-3975(21)00362-5/bibA13687E36A02CFA7D00C9D6604ABA4A2s1
http://refhub.elsevier.com/S0304-3975(21)00362-5/bibA13687E36A02CFA7D00C9D6604ABA4A2s1
http://refhub.elsevier.com/S0304-3975(21)00362-5/bibC53C3C81F4BEAC9EFD43EDBC509EE8B4s1
http://refhub.elsevier.com/S0304-3975(21)00362-5/bib84754FE94C96B56BF075D401A3F3B240s1
http://refhub.elsevier.com/S0304-3975(21)00362-5/bib84754FE94C96B56BF075D401A3F3B240s1
http://refhub.elsevier.com/S0304-3975(21)00362-5/bib43D4E4B795CFDEB5C0ECD0558A2D873Ds1
http://refhub.elsevier.com/S0304-3975(21)00362-5/bibF673E2CC8AE7530B844A1C370F8A520Es1
http://refhub.elsevier.com/S0304-3975(21)00362-5/bibF673E2CC8AE7530B844A1C370F8A520Es1
http://refhub.elsevier.com/S0304-3975(21)00362-5/bib543B51E21792122DD13681D5E3709EDFs1
http://refhub.elsevier.com/S0304-3975(21)00362-5/bib3AD28D66FC35637981C194C610D0C02Cs1
http://refhub.elsevier.com/S0304-3975(21)00362-5/bib3AD28D66FC35637981C194C610D0C02Cs1
http://refhub.elsevier.com/S0304-3975(21)00362-5/bib173F5FFAB486840E6E6FF3458789CCBAs1

T. Akutsu, J. Jansson, R. Li et al. Theoretical Computer Science 883 (2021) 83–98
[26] M. Piernik, T. Morzy, Partial tree-edit distance, Tech. Rep. RA-10/2013, Poznan University of Technology, 2013.
[27] D. Shasha, J.T.L. Wang, K. Zhang, F.Y. Shih, Exact and approximate algorithms for unordered tree matching, IEEE Trans. Syst. Man Cybern. 24 (4) (1994)

668–678.
[28] K.-C. Tai, The tree-to-tree correction problem, J. ACM 26 (3) (1979) 422–433.
[29] R.E. Tarjan, Depth-first search and linear graph algorithms, SIAM J. Comput. 1 (2) (1972) 146–160.
[30] G. Valiente, Constrained tree inclusion, J. Discret. Algorithms 3 (2) (2005) 431–447.
[31] M. Yamamoto, An improved O ∗(1.234m)-time deterministic algorithm for SAT, in: Proceedings of the 16th International Symposium on Algorithms and

Computation, Springer, 2005, pp. 644–653.
[32] M.J. Zaki, Efficiently mining frequent trees in a forest: algorithms and applications, IEEE Trans. Knowl. Data Eng. 17 (8) (2005) 1021–1035.
[33] K. Zhang, T. Jiang, Some MAX SNP-hard results concerning unordered labeled trees, Inf. Process. Lett. 49 (5) (1994) 249–254.
[34] K. Zhang, R. Statman, D. Shasha, On the editing distance between unordered labeled trees, Inf. Process. Lett. 42 (3) (1992) 133–139.
98

http://refhub.elsevier.com/S0304-3975(21)00362-5/bibCC087B611084746CD3D6C24FB0D29BBCs1
http://refhub.elsevier.com/S0304-3975(21)00362-5/bib0978223B38BB5478E1EF8EF8CC9F11DCs1
http://refhub.elsevier.com/S0304-3975(21)00362-5/bib0978223B38BB5478E1EF8EF8CC9F11DCs1
http://refhub.elsevier.com/S0304-3975(21)00362-5/bib18104A9C9E8E39619094DE786459C8DBs1
http://refhub.elsevier.com/S0304-3975(21)00362-5/bib7F1DB30144A3011865087498880AAD81s1
http://refhub.elsevier.com/S0304-3975(21)00362-5/bib1A510953DE1389307307CE768833ECF9s1
http://refhub.elsevier.com/S0304-3975(21)00362-5/bib4AF57FD8E23FB81446F85E050BBA2E42s1
http://refhub.elsevier.com/S0304-3975(21)00362-5/bib4AF57FD8E23FB81446F85E050BBA2E42s1
http://refhub.elsevier.com/S0304-3975(21)00362-5/bib0D81236CC2B2695FE9F4AF8D8E97824Cs1
http://refhub.elsevier.com/S0304-3975(21)00362-5/bibFEFAE7C796F4709CE54EFE7B845DBD49s1
http://refhub.elsevier.com/S0304-3975(21)00362-5/bibFFF430ED6ADD73B332E5FD2F7FABFD57s1

	New and improved algorithms for unordered tree inclusion
	1 Introduction
	1.1 Related results
	1.2 Applications

	2 Definitions and notation
	3 An O(d·2d·mn2)-time algorithm
	4 NP-hardness of the case of pattern trees with unique leaf labels
	5 A polynomial-time algorithm for the case of occ(P,T)=2
	6 An O∗(1.619d)-time algorithm for the case of occ(P,T)=3
	7 A randomized algorithm for the case of h(P)=1 and h(T)=2
	8 Concluding remarks
	Declaration of competing interest
	References

