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Abstract

Background: To characterize the diversity of bacterial populations in metagenomic studies, sequencing reads need
to be accurately assigned to taxonomic units in a given reference taxonomy. Reads that cannot be reliably
assigned to a unique leaf in the taxonomy (ambiguous reads) are typically assigned to the lowest common
ancestor of the set of species that match it. This introduces a potentially severe error in the estimation of bacteria
present in the sample due to false positives, since all species in the subtree rooted at the ancestor are implicitly
assigned to the read even though many of them may not match it.

Results: We present a method that maps each read to a node in the taxonomy that minimizes a penalty score
while balancing the relevance of precision and recall in the assignment through a parameter q. This mapping can
be obtained in time linear in the number of matching sequences, because LCA queries to the reference taxonomy
take constant time. When applied to six different metagenomic datasets, our algorithm produces different
taxonomic distributions depending on whether coverage or precision is maximized. Including information on the
quality of the reads reduces the number of unassigned reads but increases the number of ambiguous reads,
stressing the relevance of our method. Finally, two measures of performance are described and results with a set
of artificially generated datasets are discussed.

Conclusions: The assignment strategy of sequencing reads introduced in this paper is a versatile and a quick
method to study bacterial communities. The bacterial composition of the analyzed samples can vary significantly
depending on how ambiguous reads are assigned depending on the value of the q parameter. Validation of our
results in an artificial dataset confirm that a combination of values of q produces the most accurate results.

Background
Microbes play a fundamental role as symbionts in the
gut of mammals [1], and are strongly correlated with
human health [2]. They also control some of the most
important environmental processes, such as nitrogen
fixation [3], and have been successfully used in the
treatment of sewage [4] and to convert waste into usable
fuels [5]. The importance of microbes is reflected in the
large number of recent studies of bacterial communities
in a variety of environments, including aquatic [6-11],
soil [12-17], animal [18-23], and plant [24-29] habitats.
The use of high-throughput sequencing technologies
has greatly benefited the analysis of microbial popula-
tions [30], and different methodologies have been

developed to characterize the diversity, richness, and
similarity of bacterial communities [31-33]. Together
with the introduction of new sequencing technologies,
several challenges have emerged that need to be over-
come to gain a better understanding of the diversity of
bacteria that inhabit both the environment and our-
selves [34].
Microbial communities are commonly characterized by

mapping sequencing reads to a bacterial taxonomy based
on the 16S rRNA gene. The effectiveness of this approach
is not limited by the length of the read but by the choice
of an adequate region of the 16S rRNA gene [35,36]. The
structure of microbial communities has a high degree of
variability, both in environmental [7] and gut samples
[22]. In particular, human microbial communities differ
greatly among individuals [23] and depending on the
location of the body and time when the sample was taken
[21]. Metabolic profiling has nevertheless shown that the
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functionality of communities is more conserved for
particular environments [37], indicating that different
species distributions can achieve a similar core function-
ality. Understanding the correlation between function
and distribution of species therefore requires accurate
measurements of both variables.
We have previously shown that a large proportion of

reads in metagenomic studies can be assigned with
equal significance to more than one species in the tax-
onomy [38]. The assignment of such ambiguous reads
to the lowest common ancestor (LCA) of the matched
species [39-42] introduces many false positives (leaves in
the subtree rooted at the LCA that were not originally
matched to the read), and thus we consider other possi-
ble nodes below the LCA to assign such reads. Impli-
citly, assignments at the LCA maximize the coverage
but lower the accuracy, and we demonstrated that an
assignment based on the F-measure, a combination of
precision and recall, produces a significantly different
distribution of taxonomic ranks to which reads are
assigned.
In the absence of a reference taxonomy, the assign-

ment of ambiguous reads is usually made by either map-
ping each read to the best BLAST hit in the reference
sequences [43] or by using the reference sequences as a
template for a multiple alignment of the reads, which
defines pairwise similarities that are used to group the
reads into clusters of related species [39,42,44]. In the
absence of reference sequences, DNA composition can
be used to group the reads into clusters of related spe-
cies [45].
In this paper, we present a new method to assign

ambiguous short reads to a node in the reference taxon-
omy minimizing a penalty score that generalizes our
previous mapping based on the F-measure. Our algo-
rithm is both fast and versatile, allowing a fine-grained
assignment of reads closer to the LCA or the species
depending on the value of a single parameter q. This
parameter can be specified to have any value between 0
and 1, where setting q = 0 implies that each ambiguous
read has an optimal assignment to a leaf, q = 1 always
assigns to the LCA level, and q = 0.5 optimizes a combi-
nation of precision and recall. The use of this parameter
provides the biologist with an intuitive tool to determine
how to assign ambiguous reads, and results on six meta-
genomic datasets show the usefulness of our approach.
The use of information on the quality of the sequencing
reads results in a decrease in the number of unassigned
reads but increases the number of ambiguous reads,
thus making the assignment of such reads even more
relevant. A method to validate our assignment algorithm
is introduced and results for a set of artificial datasets
are presented. Finally we discuss possible causes for the

large proportion of ambiguous reads observed in these
datasets.

Methods
Materials
We have initially studied six bacterial communities repre-
sented by 454 sequencing tags amplified from different
16S rRNA variable regions: a marine environment (V6
region) [7], the human gut (V3 and V6 regions) [20], the
gut of lean and obese twins (V2 and V6 regions) [22],
chicken gut (V6 region) [46], and rat gut (V4 region)
[47]. The samples were between 50 and 329 bp in length
and, for each of these communities, our algorithm
assigned all the ambiguous sequencing reads at the best
possible taxonomic rank, utilizing a reference bacterial
taxonomy of 5,165 near-full-length type cultures of high
quality [39], ranging in length between 1,202 and 1,780
bp, with a uniform scheme of seven taxonomic ranks
(domain, phylum, class, order, family, genus, species).
The taxonomy covers the whole spectrum of known bac-
teria, and the dominant phyla are Proteobacteria (1,925
species), Actinobacteria (1,285), Firmicutes (1,178), Bac-
teroidetes (355), and Tenericutes (160 species).
To test the effect of sequencing errors in the sequen-

cing reads, we have also studied a dataset obtained from
a bacterial community in the Priest Pot Lake [48], which
included the quality scores for each read. Two taxo-
nomies were used for this experiment, one based on the
5,165 high-quality type cultures only and the other one
using all 322,864 16S rRNA sequences found in the
Ribosomal Database Project [39].
Validation of our assignment algorithm was performed

using artificial datasets generated with MetaSim [49], as
follows. A first dataset was created importing 5,148 16S
rRNA sequences from the taxonomy into MetaSim, and
creating a dataset of short sequencing reads with the
following parameters: 454 error model; 5,000,000 of
reads per run; normal DNA clone size distribution with
mean 500 and standard deviation 20; and expected read
length 100, 150, and 200. Reads of less than 75% the
expected length were discarded. A second dataset was
created by extracting first 300 base pairs roughly corre-
sponding to hypervariable regions V1 and V2 in each of
the 5,148 rRNA sequences, and then importing those
subsequences into MetaSim to generate a new set of
short reads using the same set of parameters as before.

Taxonomic Assignment Method
In this section, we introduce a new method for accu-
rately assigning a sequencing read Ri to a single node in
a fixed reference taxonomy tree T with a leaf set L. We
assume that each leaf in L has an associated known
sequence. The input is a set R of sequencing reads and
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a positive integer k. For each Ri Î R, there is a subset
Mi ⊆ L of leaves whose sequences contain a substring
with at most k mismatches to Ri; these leaves are
referred to as hits or matches below. The goal is to out-
put, for each Ri Î R with |Mi| ≥ 1, one node in T which
represents all of Mi in a “good” way.
For any Ri Î R, if |Mi| = 1 then Ri can be trivially

assigned to a unique leaf. However, if |Mi| ≥ 2 then Ri

is called an ambiguous read and it is not immediately
obvious how to optimally assign Ri to one node in T.
For this purpose, we let the user specify a value in the

interval [0, 1] for a new parameter q. Intuitively, setting
a low value of q means that ambiguous reads will be
assigned to nodes near the leaves, while a high value of
q means that assignments near the LCA level are pre-
ferred. Our approach for taxonomic assignment of reads
is as follows.

1. Apply a read mapping tool, such as GEM [50] for
instance, to R to compute the set of hits Mi for
every Ri Î R.
2. Let the user specify a value in the interval [0, 1]
for the parameter q.
3. For each Ri Î R:

(a) If |Mi| = 0 then output null.
(b) If |Mi| = 1 then output the leaf in Mi.
(c) Else, output all nodes j of T that have the smal-
lest possible penalty score PSi,j with respect to q.

In the following sections we give the formal definition
of the penalty score PSi,j and study some of its proper-
ties. Then, we consider how to implement Step 3c of
our method efficiently, that is, how to compute the PSi,j
values quickly.
Definition of the Penalty Score PSi,j
Let T be a (fixed) rooted tree with a leaf set L, let Mi ⊆ L,
and let q be a real number in the interval 0[1].
We need some additional notation. Let Ti be the sub-

tree of T that is rooted at the LCA of Mi. For every
node j in Ti, define:

• Ti,j = The subtree of tree Ti rooted at node j.
• True positives: TPi,j = Leaves in Ti,j that belong to Mi.
• False positives: FPi,j = Leaves in Ti,j that do not
belong to Mi.
• True negatives: TNi,j = Leaves in Ti\Ti,j that do not
belong to Mi.
• False negatives: FNi,j = Leaves in Ti\Ti,j that belong
to Mi.

See Figure 1 for an example. Note that for each node j
in Ti, the leaves of Ti are partitioned into four disjoint
subsets TPi,j, FPi,j, TNi,j, and FNi,j. The interpretation of
this is that in case the node j is selected to be the

representive for a read Ri whose hits are Mi, then each
leaf in Ti will either be a true positive, a false positive, a
true negative, or a false negative depending on whether
or not it lies in the subtree rooted at j and if it is one of
the hits.
Finally, we define the penalty score with respect to q

for every node j in Ti by the following formula:

PS q FN TP

q FP TP
i j i j i j

i j i j

, , ,

, ,

(| | / | |)

( ) (| | / | |)

= ⋅

+ − ⋅1
(1)

For every node j of T that does not belong to Ti, we
define PSi,j = ∞. In case |TPi,j| = 0 then we also define
PSi,j = ∞.
Different Values of q
Recall that our method for taxonomic assignment
assigns each ambiguous read Ri to a node j that mini-
mizes the value of PSi,j for the particular value of q spe-
cified by the user. We now study how varying the value
of q affects the resulting taxonomic assignments.
First, it is easy to see that selecting q = 0 implies that a

read Ri may have several different optimal assignments,
but there always exists an optimal assignment of Ri to a
leaf in Ti since then |FPi,j| (and hence, PSi,j) will be zero.
On the other hand, q = 1 always assigns each Ri to the
unique LCA of Mi because this gives |FNi,j| = 0 and PSi,j
= 0. Thus, the special case q = 1 corresponds to the cur-
rently commonly used methods for assigning ambiguous
reads [39-42].
Furthermore, we observe that PSi,j is a generalization

of the mapping based on the F-measure that we pre-
viously introduced in [38]. If the precision of classifying
read Ri into Tj is Pi,j = |TPi,j|/(|TPi,j| + |FPi,j|) and the
recall is Ri,j = |TPi,j|/(|TPi,j| + |FNi,j|), then the F-mea-
sure is Fi,j = 2Pi,jRi,j/(Pi,j + Ri,j) = 2|TPi,j|/(|FNi,j| + |FPi,j|
+ 2|TPi,j|)). This yields:

Figure 1 Sample Taxonomic Assignment of an Ambiguous
Read. Assigning read Ri to the jth node of Ti partitions the leaves of
Ti into true positives, false positives, true negatives, and false
negatives. In this example, the hits are Mi = {s1, s5, s6, s7}. If we let j
be the blue circled node, we obtain TPi,j = {s5, s6, s7}, FPi,j = {s8}, TNi,j

= {s2, s3, s4}, FNi,j = {s1}. True hit H = s5 (defined in Section
“Validation: Performance in ROC Space”).
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Lemma 1. Any node m that minimizes the penalty
score for q = 0.5 also maximizes the F-measure.
Proof.

arg min(| | / | | | | / | |)

arg min((| |
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To summarize, the parameter q directly influences
where in the reference taxonomy ambiguous reads will
be assigned to. The user can adjust q to obtain repre-
sentatives for ambiguous reads at the leaf level (q = 0),
the LCA level (q = 1), or somewhere in-between (0 <q <
1). Interestingly, q = 0.5 is equivalent to maximizing the
F-measure, which optimizes a combination of precision
and recall. The distribution of taxonomic ranks resulting
from setting various values of q in [0, 1] is further inves-
tigated for some real datasets in the “Results” Section.
Computation of the Penalty Scores PSi,j
Here, we focus on how to compute the penalty scores
PSi,j in Step 3c of our method efficiently. For any tree T,
let |T| denote the number of nodes in T. As before, let
Mi be a set of hits in the reference taxonomy tree T and
let Ti be the subtree of T that is rooted at the LCA of
Mi. We may assume that |Mi| ≥ 2. Below, we first
describe a simple method to obtain PSi,j for every node j
in Ti in O(|Ti|) total time (Theorem 1). Then, we show
that if O(|Tj|) time preprocessing of T is allowed, we
can reduce the time complexity to obtain PSi,j for every
node j in Ti in O(|Mi|) total time (Theorem 2). (The
preprocessing of T will be done once, before any other
computations in our taxonomic assignment method.)
This modification gives a significant speedup in case R
contains many reads that induce small sets of hits
whose LCA are located at high taxonomic ranks in T.
For every node j in Ti, define Ti,j as the subtree of tree

Ti rooted at j. The set of all leaves in Ti is denoted by
Li, and Ni is the set of all leaves in Ti that do not belong
to Mi (hence, Li = Mi ∪ Ni). Similarly, the set of all
leaves in Ti,j that belong to Mi is denoted by Mi, j, Ni,j is
the set of all leaves in Ti,j that do not belong to Mi, j,
and Li,j = Mi,j ∪ Ni, j. Using this notation, we can write
the previously defined TPi, j, FPi, j, TNi, j, and FNi,j as:

• True positives: TPi,j = Mi, j

• False positives: FPi,j = Ni, j

• True negatives: TNi,j = Ni \Ni, j

• False negatives: FNi,j = Mi \Mi, j

Next, we rewrite the formula for the penalty score in
terms of |Mi|, |Mi, j|, and |Ni, j| as:

PS
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Since Mi is given, the value of |Mi| is fixed. For any
node j in Ti, the values of |Mi, j| and |Ni, j| may be
expressed recursively as follows:

• If j is a leaf in Ti and j ∉ Mi: Then |Mi, j| = 1, |Ni,

j| = 0, and |Li, j| = 1.
• If j is a leaf in Ti and j ∉ Mi: Then |Mi, j| = 0, |Ni,

j| = 1, and |Li, j| = 1.
• If j is an internal node in Ti: Then |Mi,j| = ∑j’|Mi,j’|
and |Li,j| = ∑j’|Li,j’|, where j’ ranges over the children
of j in Ti, and |Ni, j| = |Li, j| - |Mi, j|.

Hence, the values of PSi,j for all nodes in Ti can be
obtained by two traversals of Ti: a (partial) bottom-up
traversal [51,52] to identify the root of the subtree Ti of
T (start at the leaves belonging to Mi and end when a
node that is an ancestor of all leaves from Mi is reached;
which can be determined by storing, for each node, the
number of descendent leaves from Mi, because the first
node in the bottom-up traversal that is an ancestor of
all leaves from Mi has exactly |Mi| descendent leaves
from Mi) followed by a top-down traversal to identify
the subtree Ti of T while computing |Mi, j|, |Ni, j|, |Li, j|,
and PSi,j for all nodes in Ti by applying the above rela-
tions. There are O(|Ti|) nodes in Ti, and so we have:
Theorem 1. We can find a node j in T that minimizes

the value of PSi,j for any Mi ⊆ L in O(|Ti|) time.
Next, we present an alternative method that improves

the time complexity stated in Theorem 1 if preproces-
sing of the reference taxonomy tree T is allowed.
We start by explaining how to preprocess T. Fix an

arbitrary left-to-right ordering of the nodes in T and
perform a left-to-right postorder traversal of T in O(|T|)
time while enumerating the nodes from 1 to |T| in
accordance with the order in which they are first visited.
Associate each node j with its number and, moreover,
keep track of the smallest numbered leaf in the subtree
rooted at j and denote it by m(j). Subsequently, for any
two nodes j, j’ in T, it holds that j is a proper ancestor
of j’ if and only if m(j) ≤ m(j’) ≤ j’ <j, and this condition
can be checked in O(1) time. (The intervals [m(j), j]
induced by nodes in T therefore exhibit a nested struc-
ture that will be utilized below.) Next, apply the
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O(|T|)-time preprocessing of [53,54] to T so that the
LCA of any pair of specified leaves from T can be
obtained in O(1) time, unless the height of T is bounded
by a constant (usual taxonomical classifications as
kingdom-phylum-class-order-family-genus-species have
height 8, and the NCBI taxonomy [55] has a few more
levels to account for finer distinctions), in which case
the LCA of any pair of specified leaves from T can read-
ily be obtained in O(1) time, without any preprocessing
[52]. Lastly, do a O(|T|)-time bottom-up traversal of T
to compute and store the number of leaves |Li| in the
subtree rooted at each node i in T .
Now, suppose the preprocessing has been taken care

of and we are given a set Mi ⊆ L of hits. Any node j in
Ti is called relevant if it is equal to a leaf in Mi or equal
to the LCA of two or more leaves in Mi. We have:
Lemma 2. For each node j in Ti, there exists a relevant

node j’ such that PSi, j’ ≤ PSi, j.
Proof. Suppose that j is a node in Ti that is not rele-

vant. Let j’ be the LCA of the leaves in Mi, j. Clearly, j’
is relevant and, furthermore, |Mi, j| = |Mi, j’| while |Ni, j|
> |Ni, j’| since Ti, j’ is a subtree of Ti, j. It follows that

PSi j PSi j q
Ni j
Mi j

q
Ni j
Mi j

q, , ( )
| , |

| , |
( )

| , |

| , |
( )′ − = − ⋅ ′

′
− − ⋅ = −1 1 1 ⋅⋅ ′ −

≤
| , | | , |

| , |

Ni j Ni j
Mi j

0 .

Lemma 2 implies that PSi,j only needs to be computed
for nodes in Ti that are relevant. Define the topological
restriction of Ti to Mi, denoted by Ti || Mi, as the tree
obtained by deleting from Ti all nodes that are not on a
path from the root to a leaf in Mi along with their inci-
dent edges, and then contracting every edge between a
node having just one child and its child. Then, the
nodes of Ti || Mi are precisely the relevant nodes in Ti.
Observe that Ti || Mi contains O(|Mi|) nodes.
To construct Ti || Mi for any specified Mi ⊆ L in O(|

Mi|) time, proceed as follows. Sort the leaves in Mi in
O(|Mi|) time according to their left-to-right post-
ordering numbers by a radix sort and write

Mi Mi
= { , , , }| |   1 2 with    1 2< < < | |Mi

. For x

Î {1, 2, ..., |Mi| , perform an O(1)-time LCA query on
the pair (ℓx, ℓx+1) and let kx be the answer. The set

U M k k ki Mi
= ∪ −{ , , , }| |1 2 1 then gives the set of nodes

in Ti || Mi. To obtain the edges of Ti || Mi, first use O(|
Mi|) time to perform a radix sort on the set of ordered
pairs {(m(j), j): j Î U} in non-decreasing order for the
first coordinate and decreasing order for the second
coordinate so that in the resulting ordering, for any j,
j’Î U, it holds that (m(j), j) < (m(j’), j’) if and only if
either (1) m(j) <m(j’), or (2) m(j) = m(j’) and j >j’. Thus,
whenever a node j is a proper ancestor of a node j’, the
pair (m(j), j) appears somewhere before (m(j’), j’) in
the sorted list. Then, it is straightforward to recover the
edges of Ti || Mi in O(|Mi|) time by traversing the

sorted list of pairs while using a stack to store all proper
ancestors of the currently considered node (recall that it
takes O(1) time to check the condition m(j) ≤ m(j’) ≤ j’
< j for any node j’ in the list and any element j on the
top of the stack).
Finally, the values of PSi,j for all relevant nodes can be

obtained by a bottom-up traversal of Ti || Mi. There are
O(|Mi|) relevant nodes, and so we can compute the
values of PSi,j for all relevant nodes j in Step 3c accord-
ing to formula (2) using O(|Mi|) time. To do this, note
that if j is an internal node in Ti || Mi then |Mi, j| = ∑j’

|Mi, j’|, where j’ ranges over the children of j in Ti ||
Mi, and |Ni,j| = |Li,j| - |Mi,j|, where |Li,j| = |Lj| has
been precomputed. In total:
Theorem 2. After O(|T|) time preprocessing, we can

find a node j in T that minimizes the value of PSi,j for
any Mi ⊆ L in O(|Mi|) time.

Validation: Performance in ROC Space
Each read found in a metagenomic dataset must have
originated from a unique original 16S rRNA sequence
but, due to sequencing errors and incomplete taxo-
nomic information, a significant percentage of the
reads end up being assigned at higher taxonomic
levels. Using an artificial metagenomic dataset, we can
know a priori the original sequence and therefore
measure how accurately our algorithm classifies ambig-
uous reads. We used MetaSim to generate an artificial
set of sequencing reads R with a 454 error model, and
where each read Ri is derived from a randomly
selected full-length 16S rRNA gene sequence anno-
tated in the taxonomy, denoted by Hi. Because of the
errors introduced in Ri by the simulation, a search for
the most similar full-length sequences to the read pro-
duces a set of hits, Mi, among which the true hit is
usually found. The tree Ti rooted at the LCA of Mi

can therefore include three kinds of leaves: the true hit
Hi, not true but ambiguous hits Mi \{Hi}, and false hits
Li \Mi = Ni.
When using our q-assignment schema, the sets Mi, Ni,

Mi,j, and Ni,j are defined with respect to the set of plau-
sible hits but without knowledge of the true hit Hi, as
shown in Figure 1. Our objective here is to measure
how different values of q perform in including Hi

among the selected leaves. Assignments to the LCA will
in most cases include Hi but the precision will be very
poor if the size of Ti is large, while lower values of q
can increase the precision at the risk of excluding Hi.
A common measure of performance for binary classi-

fiers is the area under the ROC curve [56]. For a given
read Ri and a particular value of q, let us define the
true positive rate with respect to the true hit Hi as
TPR TP TP FNH H H Hi i i i

= +| | /(| | | |) when Hi Î Ti and 0
otherwise (if Hi ∉ Ti both TPHi

and FN Hi
would be
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empty). Notice that when previously calculating the
assignment we used the sets TP, FP, TN, and FN
with respect to Mi, while here we calculate
TP FP TNH H Hi i i

, , , and FN Hi
taking into account

Hi only. In a similar way we define
FPR FP FP TNH H H Hi i i i

= +| | /(| | | |) . However, TPRHi

can only be 1 (when Hi is in the subtree rooted at the
node to which Ri was assigned) or 0 (when Hi is not in
the subtree) and therefore, plotting TPR versus FPR
would result in degenerated ROC curves.

We need to define TP FP TN FNH H H Hi i i i
, , , as sets of

leaves. That is, | |TPHi
=1 if Hi Î Ti, and | |TPHi

= 0

otherwise. Then, | | { }TP HH ii
= if Hi Î Ti, and

TPHi
= ∅ otherwise.

Let us define p FPR TRPi H Hi i
= ( , ) as the point in

ROC space that represents read Ri. Points above the
diagonal FPR = TPR have good predictive power, points
below it are poor classification results, and points on
the diagonal have no predictive power; that is, they are
a random guess. The distance of pi to the diagonal is
denoted by Di, and corresponds to the distance between
pi and the point of intersection between the diagonal
and the perpendicular that goes through pi. As shown

in Figure 2Di equals 2 1 2( ) /− FPRHi
, and we can

define the goodness Gq of an assignment for a particular
value of q as the sum of distances to the diagonal for all
reads, where distances are negative if a point lies below
the diagonal:

G D FPRq i

i i

Hi
= = −∑ ∑ 2

2
1( ) (3)

The value of q that maximizes this sum will be the
one with highest predictive power. This measure will be
called the q metric of performance. Notice that the dis-
tance Di differs both in sign and in value depending on
whether Hi is in the subtree Ti,j or not. We will define

DH Ti j∈ , as the distance for read Ri when Hi is in the

subtree and DH Ti j∉ , when it is not:
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For a given value of q, our assignment produces two
distinct subsets of reads: those that have been assigned
to a node among whose descendents the true hit Hi can
be found, and those that do not have Hi as a descen-
dent. The goodness of an assignment for a value of q
can then be rewritten as:
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Alternatively, and instead of assigning ambiguous reads
based on the unique q value that maximizes Gq, we can
look for the assignment that maximizes the expected dis-
tance E(Di) for each read, so our mapping would use a
combination of different q values depending on the parti-
cular read being considered. Let us assume read Ri can
be assigned to nodes n1, ..., nn for each of the q values q1,

Figure 2 Validation of Results in ROC Space. Distance in ROC space to the diagonal TPRH = FPRH. Points above the diagonal represent good
predictions, the larger the distance the better.
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..., qn. The probability of Hi being among the leaves of the
subtree Ti,j rooted at nj is p = Mi,j/Mi, and that of not
being included is 1 - p = (Mi -Mi,j) = Mi. The expected
distance for a read Ri mapped to a node j for a given q is:
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We will call this measure of performance the expected
distance metric. The value of q (and the corresponding
node) that maximizes the expected distance for Ri is
chosen as the most appropriate if the distance is posi-
tive, otherwise the assignment to the LCA is preferred.
It can be easily seen that assignments to the LCA when
the true hit Hi is among its leaves have expected dis-
tance 0, since Mi,j = Mi. Lemma 3 shows that the true
distance for assignments to the LCA is always zero and,
therefore, such assignments have no predictive power.
Lemma 3. Assignments to the LCA have no predictive

power when the true hit Hi is among its leaves.
Proof. Since the true hit Hi is among the leaves of the

subtree rooted at the LCA, the TPRHi
is 1. The FPRHi

is
| | /(| | | |)FP FP TNH H Hi i i

+ and, since assigning to the
LCA selects all possible leaves, TN Hi

= ∅ and
FPRHi

= 1 . Therefore, TPRHi
is equal to FPRHi

and the
point representing such assignment in ROC space lies on
the main diagonal, thus having no predictive power.

Results
A suffix array was constructed for the 5,165 reference
sequences in the bacterial taxonomy, and each of the
sequencing reads was mapped to these sequences using
the GEM-do-index and GEM-mapper tools [50].
GEM-do-index constructs a suffix array from the set of
full-length 16S rRNA sequences using the Burrows-
Wheeler Transform [57]. Once the sequences have been
efficiently indexed, GEM-mapper finds the closest
sequences in the suffix array for each of the short
sequencing reads in a metagenomic dataset.
Parameters were set to find all matching sequences

with up to 2 mismatches, which is about 99% identity
for reads of 200 bp. Figure 3 shows the distribution of
sequencing reads mapped to more than one sequence in
the taxonomy, and Figure 4 shows the distribution of

hits per taxonomic rank. Most gut datasets show a dis-
tribution of hits that increases with rank up to the class
level and then drops (rat, chicken, human, and twins V6
region), while the twins V2 region samples have a dis-
proportionate number of hits at the domain level and
the marine dataset does not seem to show a correlation
between the number of hits and the taxonomic rank at
which reads get assigned.
We performed an alternative mapping using the

sequencing reads as BLAST [58] queries against the
reference 16S rRNA sequences, defining ambiguous hits
as those that could be aligned to more than one species
with the same e-value (e-value ≤ 0.001). Table 1 pre-
sents a summary of the number of reads that get an
assignment with each tool.
Although BLAST hits a larger number of sequencing

reads, those reads assigned to one or more species using
GEM show a more significative BLAST average e-value
than reads with no hits (data not shown). GEM provides
a more conservative mapping, discarding those reads
that get assigned with lower significance. Allowing for
more mismatches with GEM results in a higher number
of assigned reads with a higher percentage of ambiguous
ones, at the cost of a lower average e-value of the
assigned reads (data not shown). The results discussed
in this paper, using GEM with up to 2 mismatches,
should therefore be considered a conservative estimate.
The sequencing reads that matched two or more

sequences in the reference bacterial taxonomy were
assigned at the taxonomic rank that minimized the pen-
alty score. The distribution of reads assigned at each
taxonomic rank is shown in Figure 5 for values of the q
parameter ranging from 0 to 1. These results show how
ambiguous reads can be assigned at the desired taxo-
nomic rank using different values of q: low values tend
to produce a taxonomic assignment at the genus and
species rank, while high values produce a taxonomic
assignment at the class, order, and family ranks. The
marine dataset seems to have a much higher level of
ambiguity, as shown by the large proportion of ambigu-
ous reads that get assigned at the order level for q = 1,
and by the fact that lower values of q still assign many
reads above the species level. The twins dataset is parti-
cularly interesting in that depending on the sequenced
region, the reads are assigned quite differently. With
region V2 there is a large percentage assigned above the
genus level with q = 1, and this percentage is significant
even for low values of q. The region V6, on the other
hand, has most of its ambiguous reads assigned at the
genus level when q = 1 (although with a notable subset
of reads mapped very high, at the class level), but most
of the reads get assigned at the species level quickly as
we decrease the value of q.
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Sequencing Error Bias
Sequencing with 454 suffers mainly from indels in
homopolymer runs [30], and such errors can have a
significant effect on the final count of bacterial species
in a metagenomic sample [48,59]. We analyzed the com-
position of a bacterial community using a sequencing
dataset that included quality scores for each read [48].
Two suffix arrays were constructed: one from the 5,165
high-quality sequences, and one with all the 322,864
16S rRNA sequences found in the Ribosomal Database
Project. Each read was then mapped to these taxo-
nomies using the GEM-mapper tool with the parameters
described above. The mapping was done with and with-
out the quality scores of the reads, using the error
model of 454 sequencing provided by the GEM-mapper
tool when incorporating the scores. Table 2 shows the
distribution of reads unassigned, assigned with one hit,

and assigned with two or more hits (ambiguous reads),
with and without quality information.
Among reads with two or more hits, the maximum

number of matches was 82 species (both with and with-
out quality information). Out of 26,458 reads without
hits when not using quality information (plain FASTA
files), 26,045 also have no hits when incorporating such
data (FASTQ files), 158 now have one hit, and 255 have
two or more hits. The 642 reads with one hit using
FASTA are split into 611 also with a unique hit with
FASTQ and 31 with two or more hits. Finally, all 1,261
reads with two or more hits with FASTA also have two
or more hits with FASTQ. The distribution of taxo-
nomic ranks with the 5,165 species taxonomy with and
without quality scores can be seen in Table 3. Notice
how with q = 1.0 the presence of a single incorrect spe-
cies among the hits of a read results in its mapping to

Figure 3 Distribution of Sequencing Reads. Distribution of sequencing reads (number of hits and reads) ambiguously assigned with up to 2
mismatches to two or more of the 5,165 sequences in the reference bacterial taxonomy.
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the LCA. The use of lower q values protects against
such erroneous assignments when most of the hits
belong to a particular taxonomic group, providing evi-
dence of the read belonging to a taxonomic rank lower
than the LCA of all hits.

Assignment Performance
To validate our assignment algorithm we generated six
artificial metagenomic datasets using MetaSim, with
read lengths 100, 150, and 200 bp for sequences
extracted from the whole 16S rRNA sequence or from
the V1-V2 hypervariable region only. Out of the original
5,000,000 reads, there were 195,580 (100 bp), 36,462
(150 bp), and 7,637 (200 bp) ambiguous reads when
using the whole 16S sequence; and 123,486 (100 bp),
13,147 (150 bp), and 100 (200 bp) ambiguous reads
when using the V1-V2 region.
Figure 6 shows the distribution of taxonomic ranks for

each of the datasets. For 150 and 200 bp, the percentage
of ambiguous reads is lower than that observed for
experimental datasets, and assignment of these reads to
the LCA produces a taxonomic distribution skewed
towards lower ranks, with less reads mapped at high

Figure 4 Distribution of Hits per Taxonomic Rank. Distribution of the number of hits (species with up to k mismatches) in ambiguous reads
per taxonomic rank.

Table 1 Performance of GEM and BLAST

dataset GEM-mapper BLAST

no hits 1 hit ≥ 2 hits no hits 1 hit ≥ 2 hits

marine 194,015 4,655 23,621 66,493 8,741 147,057

human 527,727 334,521 91,335 31,881 812,392 109,310

twins V2 990,094 128,649 776 89 1,068,762 50,668

twins V6 523,161 199,782 94,999 36,603 648,975 132,364

chicken 10,442 7,140 4,395 1,548 13,084 7,345

Rat 273,114 27,226 31,509 2 287,971 43,876

Comparison of GEM and BLAST hits for 6 datasets. Two or more hits
correspond to ambiguous reads.

Clemente et al. BMC Bioinformatics 2011, 12:8
http://www.biomedcentral.com/1471-2105/12/8

Page 9 of 15



Figure 5 Distribution of Taxonomic Ranks in Metagenomic Datasets. Ambiguous reads assigned in the bacterial taxonomy at each
taxonomic rank for q = 0, ..., 1. Color code: domain: purple; phylum: indigo; class: light blue; order: cyan; family: green; genus: yellow; species: red.

Table 2 Priest Pot Lake sample: Assignment

Priest Pot Lake environmental samples reference microbial taxonomy

5,165 type cultures 322,864 sequences

no hits 1 hit ≥ 2 hits no hits 1 hit ≥ 2 hits

FASTA 26,458 642 1,261 19,715 991 7,655

FASTQ 26,045 769 1,547 19,182 1,213 7,966

Priest Pot Lake samples: assignment without (FASTA) and with (FASTQ) quality scores for 5,165 type cultures and 322,864 sequences.
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taxonomic ranks. Only the dataset generated using 100
bp short reads extracted from complete 16S rRNA gene
sequences shows a similar level of ambiguity to that of
experimental datasets.
As observed in Table 4 the q metric performs better

for higher values of this parameter. As the simulated
read length decreases, there is a higher proportion of
ambiguous reads, more values of q result in a positive
Gq and the best sum of distances improves: 0.028 (200
bp), 0.048 (150 bp), and 0.096 (100 bp) when using the
full-length sequence, and 0.05 (200 bp), 0.015 (150 bp),
and 0.036 (100 bp) when using only the V1-V2 region.
Assignments with q = 0 do not perform particularly well
(-0.42, -0.32, and -0.24 for 100, 150, and 250 bp
extracted from the full-length 16S, and -0.23, -0.16, and
-0.08 for 100, 150, and 250 bp obtained from the V1-V2
region), indicating that in most cases the true hit H
would not be in the chosen subtree if we choose a single
leaf out of all possible hits. This is more so as the read
length decreases and ambiguous reads are mapped at
higher taxonomic ranks, resulting in a larger number of
possible hits (Mi) and a lower probability of choosing
the true hit (Mi,j/Mi).
The expected distance metric E(Di) maps half of the

reads to the LCA, and the rest get evenly distributed
among all q values, as seen in Table 5. As with the q
metric, more ambiguous datasets produce better results,
and the sum of distances gradually increases as well:
0.073 (200 bp), 0.086 (150 bp), and 0.125 (100 bp) when

using the full-length sequence, and 0.031 (200 bp), 0.058
(150 bp), and 0.077 (100 bp) when using the V1-V2
region. The best sum of distances is always larger with
E(Di) than with Gq, indicating that a combination of
values of q is a better predictor than assigning all reads
using a unique value.
Table 6 shows precision and recall values for the q

metric in the six artificial datasets. Precision decreases
and recall increases with higher values of this parameter,
as expected. Moreover, reads extracted from full-length
sequences tend to have more matches than reads
extracted from the V1-V2 region and thus, precision
values are higher for reads extracted from the V1-V2
region than for reads extracted from full-length
sequences (the latter contain more false positives), and
recall values tend to be higher for reads extracted from
full-length sequences than for reads extracted from the
V1-V2 region (the latter contain more false negatives).

Discussion
Comparison of results between GEM and BLAST show
that, although BLAST can map more reads, there is still
a large number of reads that either cannot be assigned
to any species in the taxonomy, or can be assigned to
more than one species. GEM provides a more conserva-
tive assignment, with assigned reads having a more sig-
nificant e-value in BLAST. The combined speed of
GEM in assigning species to each read and of our algo-
rithm in mapping ambiguous reads to the taxonomic
rank minimizing the penalty score provides a useful tool
to quickly test hypotheses about microbial communities.
Ambiguous reads are assigned to different taxonomic

ranks depending on the value of q, as shown in Figure 5
Figure 6 and Table 3. As the value of q increases, more
reads get assigned at higher taxonomic ranks, with
clearly different distributions between the extreme
values q = 0 and q = 1. Ambiguous and unassigned
reads could either belong to species not present in the
taxonomy or be artifacts due to errors in the experimen-
tal process. Bacterial taxonomies are biased towards cul-
tivable species, but the human gut and oceanic
environments are known to harbor many rare, unculti-
vable bacteria [7,20]. Even if a large number of reads
come from unknown species, most of them have a small
number of hits (as seen in Figure 3) and would only
introduce a moderate amount of error. Reads with a
large number of hits, such as some of the reads coming
from the twins V2 region dataset, might be chimeric
sequences product of the PCR amplification step [60],
or reads belonging to species from yet to be identified
taxonomic groups. Reads not uniquely mapped can also
be caused by sequencing errors, most commonly homo-
polymer indels when using 454 sequencing [61]. We
would expect to observe differences in the distributions

Table 3 Priest Pot Lake sample: Taxonomic Distribution

leaves F-measure LCA

rank 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

domain 0 0 0 0 0 0 0 0 0 0 3

phylum 0 0 0 0 0 0 0 0 0 0 0

class 0 0 0 0 0 0 0 0 0 0 4

order 0 0 0 0 0 1 1 1 1 2 366

family 0 0 1 5 20 47 105 204 232 242 345

genus 0 190 424 455 467 445 561 754 733 727 543

species 1,261 1,071 836 801 774 768 594 302 295 290 0

leaves F-measure LCA

rank 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

domain 0 0 0 0 0 0 0 0 0 0 27

phylum 0 0 0 0 0 0 0 0 0 0 0

Class 0 0 0 0 0 0 0 0 0 0 15

order 0 0 0 0 1 2 2 2 3 7 419

family 0 2 7 19 43 75 136 266 315 347 393

genus 0 290 529 561 587 568 689 938 902 892 693

species 1,547 1,255 1,011 967 916 902 720 341 327 301 0

Priest Pot Lake samples: taxonomic distribution without (top) and with
(bottom) quality scores for 5,165 type cultures. The top row indicates values
of the parameter q between 0 and 1.
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of homopolymers between the sets of ambiguous and
unambiguous reads, but we could not find a significantly
higher number of homopolymers for any of these sets
across all our datasets (data not shown). Analysis of the
distributions of homopolymer lengths versus the

number of homopolymers per read was also inconclu-
sive, and we could not clearly differentiate the distribu-
tions in ambiguous and unambiguous reads. A BLAST
search using reads with no hits as both query and data-
base showed that the vast majority can be aligned with

Figure 6 Distribution of Taxonomic Ranks in Simulated Datasets. Simulated ambiguous reads assigned in the bacterial taxonomy at each
taxonomic rank for q = 0, ..., 1. Datasets were constructed from whole 16S rRNA sequence and from the V1-V2 hypervariable region. Color code:
domain: purple; phylum: indigo; class: light blue; order: cyan; family: green; genus: yellow; species: red.

Table 4 Validation of Results: Gq

metric length ∑ Di 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Gq [16S] 100 0.096 -0.42 -0.13 -0.06 -0.01 0.01 0.03 0.05 0.07 0.08 0.09 0.00

150 0.048 -0.32 -0.14 -0.09 -0.05 -0.02 -0.00 0.01 0.02 0.03 0.04 0.00

200 0.028 -0.24 -0.13 -0.09 -0.06 -0.04 -0.02 -0.01 0.00 0.01 0.03 0.00

Gq
[V1-V2]

100 0.036 -0.23 -0.12 -0.08 -0.04 -0.03 -0.01 0.00 0.01 0.02 0.03 0.00

150 0.015 -0.16 -0.11 -0.08 -0.05 -0.04 -0.02 -0.01 -0.00 0.00 0.01 0.00

200 0.005 -0.09 -0.05 -0.01 -0.00 -0.00 -0.00 -0.00 0.00 0.00 0.00 0.00

Sum of distances Gq for each value of q in simulations using the full-length 16S rRNA gene sequence (top) and the V1-V2 hypervariable region (bottom) for reads
of length 100, 150, and 200 bp. The column ∑ Di indicates the best sum of distances achieved.
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high significance (often perfect matches) to other no-hit
reads, indicating that either the same type of sequencing
error occurred frequently or that these reads cannot be
mapped because the corresponding 16S rRNA sequence
is not in the taxonomy. On the other hand, incorporat-
ing read quality information reduces the number of
unassigned reads but increases the number of ambigu-
ous reads more significantly than that of uniquely
assigned reads (see Table 3), stressing the importance of
an assignment of ambiguous reads that minimizes bias
in the estimation of diversity.
Artificial datasets produced through simulations con-

tained a lower percentage of ambiguous reads when
compared to experimental datasets for similar read
lengths, and most ambiguous reads were assigned at
lower taxonomic ranks. The simulations using the
V1-V2 hypervariable region to extract short reads were
expected to mimic experimental conditions more
closely, but they showed even less ambiguity than simu-
lations using the full-length 16S rRNA sequence to
obtain the short reads. The results described in Section
“Assignment Performance”, therefore, represent a low
estimate of performance, and datasets with a higher

proportion of ambiguous reads would further benefit
from our assignment algorithm. Tables 4 and 5, in fact,
show how simulations with a higher proportion of
ambiguous reads benefit more from our taxonomic
mapping algorithm. Although the sequencing error
models utilized in the simulations probably differ
slightly from the actual errors, we believe the increased
ambiguity observed in the experimental datasets is due
to a combination of several factors: sequencing errors,
PCR artifacts, and incomplete taxonomic information
for some of the species present in the samples. Selecting
a unique q value to assign ambiguous reads based on
these simulations might therefore produce biased results
and, until more realistic simulations can be performed,
we suggest the use of the estimated distance metric
instead, which does not require an estimation of an
optimal value for q. It should be noticed that, both in
the q metric and in the expected distance metric, the
distances are relevant to determine whether the assign-
ment to the LCA can be outperformed, but the true
measure of significance is given by the observed differ-
ences in the distribution of taxonomic ranks, as seen in
Figure 5 and Figure 6.

Table 5 Validation of Results: Assignments

metric length ∑ Di 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

E(Di)
[16S]

100 0.125 2.3% 3.9% 4.5% 5.1% 5.0% 5.4% 5.7% 6.2% 7.0% 9.6% 45.0%

150 0.080 3.5% 4.5% 4.9% 5.4% 4.9% 5.2% 5.2% 5.2% 5.2% 5.4% 50.0%

200 0.070 4.3% 4.8% 5.1% 5.5% 4.8% 5.2% 5.1% 4.8% 4.4% 4.1% 51.4%

E(Di)
[V1-V2]

100 0.077 4.6% 5.2% 5.6% 5.9% 5.3% 5.5% 5.3% 5.0% 4.9% 5.0% 47.1%

150 0.056 5.7% 6.0% 6.1% 6.3% 5.5% 5.7% 5.5% 4.7% 4.1% 3.4% 46.5%

200 0.023 7.1% 7.3% 7.3% 7.4% 6.2% 6.2% 5.4% 4.5% 4.0% 3.0% 41.0%

Percentage of reads assigned at the node selected for each value of q when maximizing E(Di) in simulations using the full-length 16S rRNA sequence (top) and
the V1-V2 hypervariable region (bottom) for reads of length 100, 150, and 200 bp. The column ∑ Di indicates the best sum of distances achieved.

Table 6 Validation of Results: Precision and Recall

full 16S rRNA V1-V2 region

100 bp 150 bp 200 bp 100 bp 150 bp 200 bp

q p r p r p r p r p r p r

0.0 0.1827 0.1827 0.2503 0.2503 0.3038 0.3038 0.3085 0.3085 0.3553 0.3553 0.4021 0.4021

0.1 0.1820 0.4416 0.2480 0.4296 0.3003 0.4252 0.3059 0.4246 0.3530 0.4194 0.4085 0.4536

0.2 0.1791 0.5165 0.2448 0.4920 0.2954 0.4793 0.3026 0.4819 0.3502 0.4644 0.4119 0.4948

0.3 0.1742 0.5773 0.2401 0.5551 0.2863 0.5367 0.2960 0.5319 0.3453 0.5071 0.4012 0.5464

0.4 0.1677 0.6343 0.2314 0.6205 0.2752 0.5996 0.2873 0.5924 0.3394 0.5688 0.3741 0.6020

0.5 0.1633 0.6653 0.2262 0.6500 0.2707 0.6322 0.2816 0.6205 0.3326 0.5939 0.3558 0.6224

0.6 0.1548 0.7054 0.2147 0.6938 0.2586 0.6779 0.2687 0.6666 0.3198 0.6417 0.3427 0.6633

0.7 0.1436 0.7483 0.2001 0.7393 0.2399 0.7295 0.2476 0.7156 0.2924 0.7000 0.3343 0.7143

0.8 0.1284 0.7941 0.1767 0.7898 0.2123 0.7909 0.2189 0.7718 0.2571 0.7620 0.3108 0.7551

0.9 0.1081 0.8519 0.1465 0.8506 0.1735 0.8544 0.1815 0.8383 0.2146 0.8366 0.2480 0.8367

1.0 0.0532 0.9628 0.0719 0.9700 0.0818 0.9788 0.0807 0.9726 0.0893 0.9788 0.1084 0.9700

Precision (p) and recall (r) for each value of q in simulations using the full-length 16S rRNA sequence and the V1-V2 hypervariable region (right) for reads of 100,
150, and 200 bp.
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Conclusions
In this paper, we have introduced a new method for the
taxonomic assignment of ambiguous sequencing reads
based on a generalization of the F-measure that mini-
mizes a penalty score combining the precision and
recall of the mapping. There is, to the best of our
knowledge, no other taxonomic assignment method
concerning precision and recall, apart of the assignment
to the LCA. By using a suffix array representation of
the sequences in the leaves of the taxonomy and pre-
processing the taxonomy for fast search of relevant
nodes, our assignment algorithm can work in time lin-
ear in the number of sequences matching a read. Our
algorithm can analyze large metagenomic datasets even
on a small PC. For instance, on a MacBook Pro with
8GB of memory, the analysis of the Priest Pot Lake
dataset takes approximately 30 minutes for GEM to
analyze (up to 7 mismatches), and another 30 minutes
to assign ambiguous reads. The use of a single para-
meter to control whether precision or recall should be
prioritized results in assignments with clearly different
distributions of taxonomic ranks. The assignment strat-
egy of sequencing reads introduced in this paper is
therefore both a versatile and a quick method to study
bacterial communities.
The study of six different datasets of environmental and

gut samples shows that the composition and diversity of
bacterial species observed in a sample can vary signifi-
cantly depending on whether ambiguous or unambiguous
reads are used, and on the particular value of the q para-
meter. Results with a dataset where read quality informa-
tion is provided shows that the number of ambiguous
reads increases when such information is used, making
our algorithm more relevant. Validation of the assignment
schema in an artificial dataset shows that a combination of
different q values produces the most accurate results. The
fact that a unique set of sequencing reads can produce
very different distributions depending on how the large
number of ambiguous reads are assigned has deep impli-
cations for metagenomic studies in general, and in particu-
lar for those trying to correlate bacterial composition with
disease states. A more accurate characterization of these
reads can therefore provide a better understanding of the
microbial diversity around and within us.

Availability
The software and data sets are available under the GNU
GPL at the supplementary material web page http://
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